RESERVE AND ECONOMIC EVALUATION OIL AND GAS PROPERTY

TARTARUGA FIELD SERGIPE-ALAGOAS BASIN, BRAZIL

Owned by

MAHA ENERGY INC.

December 31, 2016 (January 1, 2017)

Chapman Petroleum Engineering Ltd.

1122 - 4th Street S.W., Suite 700, Calgary, Alberta T2R 1M1 • Phone: (403) 266-4141 • Fax: (403) 266-4259 • www.chapeng.ab.ca

February 28, 2017

Maha Energy Inc. 1140, 10201 Southport Rd. SW Calgary, AB T2W 4X9

Attention: Mr. Jonas Lindvall

Dear Sir:

Re: Reserve and Economic Evaluation – Maha Enregy Inc. <u>Tartaruga Field, Sergipe-Alagoas Basin, Brazil – December 31, 2016</u>

In accordance with your authorization we have performed a reserve and economic evaluation of an oil and gas property located in Tartaruga Field, Brazil, owned by Maha Energy Inc. (the "Company") for an effective date of December 31, 2016 (January 1, 2017).

This evaluation has been carried out in accordance with standards set out in the Canadian Oil and Gas Evaluation Handbook ("COGEH"), compliant with the NI 51-101 standards and the professional practice standard under our Permit to Practice. The report has been prepared and/or supervised by a "Qualified Reserves Evaluator" as demonstrated on the accompanying Certificate of Qualification of the authors.

The INTRODUCTION contains the authorization and purpose of the report and describes the methodology and economic parameters used in the preparation of this report.

The EXECUTIVE SUMMARY contains the results of this reserve and economic evaluation presented in a form consistent with the requirements of Form 51-101 F1 Part 2, Item 2.1 (Forecast Prices and Costs). The Forecast Prices of our benchmark products are also presented.

The SUMMARY OF RESERVES AND ECONOMICS complements the Executive Summary, including values at the property level and the consolidated cash flows for each accumulating reserve category. The net present values presented in this report do not necessarily represent the fair market value of the reserves evaluated in this report. All monetary values presented in this report are expressed in terms of US dollars.

The DISCUSSION contains a description of the interests and burdens, reserves and geology, production forecasts, product prices, capital and operating costs and a map of each major property. The economic

results and cash flow forecasts (before and after income tax) are also presented on an entity and property summary level.

A REPRESENTATION LETTER from the Company confirming that to the best of their knowledge all the information they provided for our use in the preparation of this report was complete and accurate as of the effective date, is enclosed following the Glossary.

Because the reserves data are based on judgments regarding future events, actual results will vary and the variations may be significant. We have no responsibility to update our report for events and circumstances which may have occurred since the preparation date of this report.

Prior to public disclosure of any information contained in this report, or our name as author, our written consent must be obtained, as to the information being disclosed and the manner in which it is presented. This report may not be reproduced, distributed or made available for use by any other party without our written consent and may not be reproduced for distribution at any time without the complete context of the report, unless otherwise reviewed and approved by us.

We consent to the submission of this report, in its entirety, to securities regulatory agencies and stock exchanges, by the Company.

It has been a pleasure to prepare this report and the opportunity to have been of service is appreciated.

Yours very truly, Chapman Petroleum Engineering Ltd.

[Original Signed By:]

C. W. Chapman

C. W. Chapman, P. Eng., President

[Original Signed By:]

D.J. Brière

D.J. Brière, P.Eng. General Manager International

jdb/lml/6290 attachments PERMIT TO PRACTICE CHAPMAN PETROLEUM ENGINEERING LTD. [Original Signed By:] Signature <u>C.W. Chapman</u> Date <u>February 24, 2017</u> PERMIT NUMBER: P 4201

The Association of Professional Engineers and Geoscientists of Alberta

I, C. W. CHAPMAN, P. Eng., Professional Engineer of the City of Calgary, Alberta, Canada, officing at Suite 700, 1122 – 4th Street S.W., hereby certify:

- 1. THAT I am a registered Professional Engineer in the Province of Alberta and a member of the Australasian Institute of Mining and Metallurgy.
- THAT I graduated from the University of Alberta with a Bachelor of Science degree in Mechanical Engineering in 1971.
- THAT I have been employed in the petroleum industry since graduation by various companies and have been directly involved in reservoir engineering, petrophysics, operations, and evaluations during that time.
- THAT I have in excess of 25 years in the conduct of evaluation and engineering studies relating to oil & gas fields in Canada and around the world.
- 5. THAT I participated directly in the evaluation of these assets and properties and preparation of this report for Maha Energy Inc., dated February 28, 2017 and the parameters and conditions employed in this evaluation were examined by me and adopted as representative and appropriate in establishing the value of these oil and gas properties according to the information available to date.
- THAT I have not, nor do I expect to receive, any direct or indirect interest in the properties or securities of Maha Energy Inc., its participants or any affiliate thereof.
- THAT I have not examined all of the documents pertaining to the ownership and agreements referred to in this report, or the chain of Title for the oil and gas properties discussed.
- A personal field examination of these properties was considered to be unnecessary because the data available from the Company's records and public sources was satisfactory for our purposes.

[Original Signed By:]

C.W. Chapman

C.W. Chapman, P.Eng. President

 PERMIT TO PRACTICE

 CHAPMAN PETROLEUM ENGINEERING LTD.

 [Original Signed By:]

 Signature
 C.W. Chapman

 Date
 February 24, 2017

 PERMIT NUMBER: P 4201

 The Association of Professional Engineers and Geoscientists of Alberta

I, D. J. BRIERE, P. Eng., Professional Engineer of the City of Calgary, Alberta, Canada, officing at Suite 700, 1122 – 4th Street S.W., hereby certify:

- 1. THAT I am a registered Professional Engineer in the Province of Alberta.
- THAT I graduated from the University of Calgary with a Bachelor of Science degree in Electrical Engineering in 1978.
- THAT I have been employed in the petroleum industry since graduation by various companies and have been directly involved in reservoir engineering, petrophysics, operations, and evaluations during that time.
- THAT I have over 30 years of experience in engineering studies relating to oil & gas fields in Canada and around the world.
- 5. THAT I participated directly in the evaluation of these assets and properties and preparation of this report for Maha Energy Inc., dated February 28, 2017 and the parameters and conditions employed in this evaluation were examined by me and adopted as representative and appropriate in establishing the value of these oil and gas properties according to the information available to date.
- THAT I have not, nor do I expect to receive, any direct or indirect interest in the properties or securities of Maha Energy Inc., its participants or any affiliate thereof.
- THAT I have not examined all of the documents pertaining to the ownership and agreements referred to in this report, or the chain of Title for the oil and gas properties discussed.
- A personal field examination of these properties was considered to be unnecessary because the data available from the Company's records and public sources was satisfactory for our purposes.

[Original Signed By:]

D.J. Brière

D.J. Brière, P.Eng. General Manager International

I, HAROLD J. RYAN, P. Geol., Professional Geologist of the City of Calgary, Alberta, Canada, officing at Suite 700, 1122 – 4th Street S.W., hereby certify:

- 1. THAT I am a registered Professional Geologist in the Province of Alberta, a Fellow of the Geological Association of Canada and a Fellow of the Geological Society of London.
- THAT I graduated from the University of Calgary with a Bachelor of Science degree in Geology in 1983.
- THAT I have been employed in the petroleum industry since graduation by various companies and have been directly involved in petroleum geology, petrophysics, operations, and evaluations during that time.
- THAT I have in excess of 20 years of experience in the conduct of evaluation and geological studies relating to oil and gas fields in Canada and internationally.
- 5. THAT I participated directly in the evaluation of these assets and properties and preparation of this report for Maha Energy Inc., dated February 28, 2017 and the parameters and conditions employed in this evaluation were examined by me and adopted as representative and appropriate in establishing the value of these oil and gas properties according to the information available to date.
- THAT I have not, nor do I expect to receive, any direct or indirect interest in the properties or securities of Maha Energy Inc., its participants or any affiliate thereof.
- 7. THAT I have not examined all of the documents pertaining to the ownership and agreements referred to in this report, or the chain of Title for the oil and gas properties discussed.
- A personal field examination of these properties was considered to be unnecessary because the data available from the Company's records and public sources was satisfactory for our purposes.

[Original Signed By:]

Harold J. Ryan

Harold J. Ryan, P.Geol. Manager Geoscience

I, Klorinda Kaci, of the city of Calgary, Alberta, Canada officing at Suite 700, 1122 – 4th Street S.W., Calgary, Alberta hereby certify:

- THAT I am a member of Society of Petroleum Engineers.
- THAT I hold a Bachelor of Applied Technology in Petroleum Engineering from Southern Alberta Institute of Technology (SAIT) in Calgary (June 2009). I hold a Bachelor of Science degree in Civil Engineering from Tirana University of Albania 1989.
- THAT I have been employed in the petroleum industry from 1994 to 2000 in Albania, and from January 2008 to the present time in Calgary.
- 4. THAT I participated directly in the evaluation of these assets and properties and preparation of this report for Maha Energy Inc., dated February 28, 2017 and the parameters and conditions employed in this evaluation were examined by me and adopted as representative and appropriate in establishing the value of these oil and gas properties according to the information available to date.
- THAT I have not, nor do I expect to receive, any direct or indirect interest in the properties or securities of Maha Energy Inc., its participants or any affiliate thereof.
- THAT I have not examined all of the documents pertaining to the ownership and agreements referred to in this report, or the chain of Title for the oil and gas properties discussed.
- A personal field examination of these properties was considered to be unnecessary because the data available from the Company's records and public sources was satisfactory for our purposes.

7

[Original Signed By:]

Klorinda Kaci

Klorinda Kaci, B.Sc., B.A.Tech., Economics Coordinator / Technical Assistant

RESERVE AND ECONOMIC EVALUATION OIL AND GAS PROPERTY

TARTARUGA FIELD SERGIPE-ALAGOAS BASIN, BRAZIL

Owned by

MAHA ENERGY INC.

December 31, 2016 (January 1, 2017)

8

Chapman Petroleum Engineering Ltd. -

TABLE OF CONTENTS

9

Introduction

Authorization Purpose of Report Use of Report Scope of Report Basis of Report Evaluation Standard Used Site Visit

Orientation Map

Executive Summary

Discussion

BRAZIL Tartaruga Field – Sergipe-Alagoas Basin

Glossary

Company Representation Letter

INTRODUCTION INDEX

- 1. Authorization
- 2. Purpose of the Report
- 3. Use of the Report
- 4. Scope of the Report
 - 4.1 Methodology
 - 4.2 Land Survey System
 - 4.3 Economics
 - 4.4 Barrels of Oil Equivalent
 - 4.5 Environmental Liabilities
- 5. Basis of Report
 - 5.1 Sources of Information
 - 5.2 Product Prices
 - 5.3 Product Sales Arrangement
 - 5.4 Royalties
 - 5.5 Capital Expenditures and Operating Costs
 - 5.6 Income Tax Parameters
 - 5.7 Abandonment and Restoration
- 6. Evaluation Standard Used
 - 6.1 General
 - 6.2 Reserves Definitions
- 7. Site Visit

Attachments

Orientation Map

INTRODUCTION

1. AUTHORIZATION

This evaluation has been authorized by Mr. Jonas Lindvall, on behalf of Maha Energy Inc. The engineering analysis has been performed during the months of January and February 2017.

2. PURPOSE OF THE REPORT

The purpose of this report is to prepare a third party independent appraisal of the oil and gas reserves owned by Maha Energy Inc. in Brazil for the Company's securities exchange financial reporting.

The values in this report do not include the value of the Company's undeveloped land holdings nor the tangible value of their interest in any associated plant and well site facilities that they may own.

3. USE OF THE REPORT

The report is intended to support a filing on the Swedish Stock Exchange and for the Company's annual corporate financial planning requirements.

4. SCOPE OF THE REPORT

4.1 Methodology

The evaluation of the reserves properties included in the report has been conducted under a discounted cash flow analysis of estimated future net revenue, which is the principal tool for estimating oil and gas property values and supporting capital investment decisions.

4.2 Land Survey System

The Brazilian MAPGEO2015 was designed to meet the demands of mapping and engineering. It was conceived in a partnership with the Brazilian Institute of Geography and Statistics (IBGE), the Department of Geodetics (CGED), and the Polytechnic School of the University of São Paulo – EPUSP who together followed the Geocentric Reference System for the Americas

(SIRGAS) project which had the participation of the Latin American countries and those around the Caribbean.

Since 2014, SIRGAS2000 is the only geodetic reference system in the country. This Geodetic Data Base comprises information on reference stations, including their coordinates and supporting data in three dimensions, which, in turn, comprise the Brazilian Geodetic System (SGB) for the National Cartographic System (SCN).

The previous cartographic system in Brazil was SAD69, and it was 'topocentric', meaning that the origin and orientation points were on the terrestrial surface. The SIRGAS2000 system is very different. It is 'geocentric' which means that it has an estimated point in the center of the earth (geoid) as its reference. This better accommodates GPS satellite measurements.

SIRGAS2000 could not be implemented without the help of RBMC (Brazilian Network for Continuous Monitoring of the GPS system) who in 1996, established the concept of 'active' networks by means of continuously monitoring GPS satellites.

The purpose of establishing the state GPS networks is to ensure that all Federation Units have a highly accurate interconnection. The coordinates of the RBMC stations are a very important aspect to the production of the final results using survey references. All of the stations integrate SIRGAS2000, whose final coordinates are ± 5 mm-precise, making it one of the most accurate networks in the world.

4.3 Economics

The results of the before and after tax economic analysis, which are presented for each entity and property summary, are in a condensed form presented on one page for simplicity in analyzing the cash flows, however, if for any reason more extensive breakdown of the cash flow is required, a separate schedule can be provided showing the full derivation and breakdown of any or all of the columns on the summary page.

The economic presentation shows the gross property and company gross and net (before and after royalty) production of oil, gas and each NGL product along with the product prices adjusted for oil quality and heating value of gas. Oil prices also include the deduction for trucking costs where applicable for royalty deductions.

The second level includes the revenues, royalties, operating costs, processing income, abandonment costs, capital, and cash flow of the property. Operating costs are presented for the gross property and the company share, split between variable and fixed costs.

Net revenues are presented annually. Revenue from custom processing of oil or gas is presented separately.

The third level of data presents the cumulative cash flow values (present worth) for various discount rates. Also, the net cash flow breakdown is presented. The project profitability criteria are summarized on the bottom right of the page. These data are not relevant in the case of corporate evaluations but are useful in assessing individual capital projects.

4.4 Barrels of Oll Equivalent

If at any time in this report reference is made to "Barrels of Oil Equivalent" (BOE), the conversion used is 6 Mscf : 1 STB (6 Mcf : 1 bbl).

BOEs may be misleading, particularly if used in isolation. A BOE conversion ratio of 6 Mcf : 1 bbl is based on an energy equivalency conversion method primarily applicable at the burner tip and does not represent value equivalency at the well head.

4.5 Environmental Liabilities

We have been advised by the Company that they are in material compliance with all Environmental Laws and do not have any Environmental Claims pending, as demonstrated in the Representation Letter attached.

5. BASIS OF REPORT

5.1 Sources of Information

Sources of the data used in the preparation of this report are as follows:

- Ownership and Burdens have been derived from the Company's land records and other information from the Company as required for clarification;
- ii) Production data is provided directly by the Company;
- iii) Well data is provided from the Company's well files;
- Operating Costs are based on estimated revenue and expense statements provided by the Company in discussions with the Company;
- Price differentials are derived from discussions with the Company and our experience in the area for new and non-producing properties;
- vi) Timing of Development Plans and Capital estimates are determined by discussions with the Company together with our experience and judgment.

5.2 Product Prices

Chapman Petroleum Engineering Ltd. conducts continual surveillance and monitoring on a number of Benchmark product prices both locally and internationally. Based on historical data, current conditions and our view of the relevant political and economic trends, we independently prepare oil, gas and by-product price forecasts including predictions for the near term (first few years) with escalation thereafter for a maximum of 15 years, after which prices are held constant.

In establishing our forecasts we also consider input from operating companies, consulting firms, oil & gas marketing companies and financial institutions. Our forecasts are updated quarterly and the latest one prior to the effective date would generally be used. The forecast used for this report is presented in Table 5 in the Executive Summary.

The Benchmark Oil Par Price shown is the equivalent price of the Brent Spot (ICE) estimated based on historic data.

The gas prices under various types of contracts currently available, i.e. conventional, local discount and export contracts have been predicted to follow the same trends. The initial oil and gas prices for each property have been adjusted in this report to reflect the relative actual prices being received or forecast to be received in the gas to wire negotiations.

The Natural Gas Liquid (NGL) blended mix price has been established for each applicable property in this report based on the price and relative volumes of each NGL component of the

gas stream recovered at the plant and wellhead for that property based on forecasted plant and revenue data.

For properties where actual data is not available, an average blended mix price has been estimated based on a typical liquid composition assumed to be 40% propane, 30% butane and 30% pentanes plus.

Any prices quoted in the property discussions reflect fully adjusted prices for crude quality, transportation, gas heating value and specific contractual arrangements. In the case of delayed production the equivalent 2017 price for that production has been quoted.

5.3 Product Sales Arrangement

The Company does not have any "hedge" contracts in place at this time.

5.4 Royalties

A full provision for royalties under the latest regulations and incentive programs for the applicable territory have been included in this report. Likewise, Freehold royalties, mineral taxes, gross overriding royalties and any other burdens have been accounted for.

5.5 Capital Expenditures and Operating Costs

Operating costs and capital expenditures have been based on historical experience and analogy where necessary and are expressed in current year dollars and escalated as follows:

2017	- No Escalation
2018-2032	- 2.0% per year
Thereafter	- No Escalation

5.6 Income Tax Parameters

Net cash flows after consideration of corporate income tax have been included in this report, according to Brazil income tax rate of 34%.

Future capital expenditures anticipated for this report are predominantly development costs, and have been included as exploration or intangible costs.

5.7 Abandonment and Restoration

Abandonment and restoration costs, net of salvage, have been included in the cash flows for the final event of any particular well. The abandonment cost does not impact the economic limit and is included in the final year of production. For marginal wells nearing the end of their economic life, these costs may result in a negative net present value.

In this report, we have accounted for these costs for only the wells which are being evaluated and have not included other shut-in or suspended wells in the Company's inventory or their facilities and pipelines.

6. EVALUATION STANDARD USED

6.1 General

This evaluation and report preparation have been carried out in accordance with standards set out in the APEGA professional practice standard "The Canadian Oil and Gas Evaluation Handbook" ("COGEH"), in conjunction with COGEH definitions are presented below and are generally compliant with PRMS standards.

6.2 Reserve Definitions

The following definitions, extracted from Section 5.4 of the Canadian Oil and Gas Evaluation Handbook, Volume 1 – Second Edition (COGEH-1) published by the Petroleum Society of CIM and the Calgary Chapter of the Society of Petroleum Evaluation Engineers (SPEE) as specified by NI 51-101 have been used in preparing this report. These definitions are compliant with the PRMS.

DEFINITIONS OF RESERVES

The following definitions and guidelines are designed to assist evaluators in making reserves estimates on a reasonably consistent basis, and to assist users of evaluation

reports in understanding what such reports contain and, if necessary, in judging whether evaluators have followed generally accepted standards.

The guidelines are as follows:

- General criteria for classifying reserves,
- Procedures and methods for estimating reserves,
- Confidence levels of individual entity and aggregate reserves estimates,
- Verification and testing of reserves estimates.

The determination of oil and gas reserves involves the preparation of estimates that have an inherent degree of associated uncertainty. Categories of proved, probable, and possible reserves have been established to reflect the level of these uncertainties and to provide an indication of the probability of recovery.

The estimation and classification of reserves requires the application of professional judgement combined with geological and engineering knowledge to assess whether or not specific reserves classification criteria have been satisfied. Knowledge of concepts including uncertainty and risk using probability and statistics, where deterministic and probabilistic estimation methods are required to properly use and to apply reserves definitions. The concepts are presented and discussed in greater detail within the guidelines of Section 5.5 of the Canadian Oil and Gas Evaluation Handbook, Volume 1 – Second Edition (COGEH-1).

The following definitions apply to both estimates of individual Reserves Entities and the aggregate of reserves for multiple entities.

RESERVES CATEGORIES

Reserves are estimated remaining quantities of oil and natural gas and related substances anticipated to be recoverable from known accumulations, as of a given date, based on:

- Analysis of drilling, geological, geophysical, and engineering data;
- The use of established technology;
- Specified economic conditions, which are generally accepted as being reasonable, and shall be disclosed.

Reserves are classified according to the degree of certainty associated with the estimates.

Chapman Petroleum Engineering Ltd.

- a. <u>Proved Reserves</u> are those reserves that can be estimated with a high degree of certainty to be recoverable. It is likely that the actual remaining quantities recovered will exceed the estimated proved reserves.
- b. <u>Probable Reserves</u> are those additional reserves that are less certain to be recovered than proved reserves. It is equally likely that the actual remaining quantities recovered will be greater or less than the sum of the estimated proved + probable reserves.
- c. <u>Possible Reserves</u> are those additional reserves that are less certain to be recovered than probable reserves. It is unlikely that the actual remaining quantities recovered will exceed the sum of the estimated proved + probable + possible reserves.

Other criteria that must also be met for the categorization of reserves are provided in Section 5.5.4 of the Canadian Oil and Gas Evaluation Handbook, Volume 1 – Second Edition (COGEH-1).

DEVELOPMENT AND PRODUCTION STATUS

Each of the reserves categories (proved, probable and possible) may be divided into developed and undeveloped categories.

a. <u>Developed Reserves</u> are those reserves that are expected to be recovered from existing wells and installed facilities or, if facilities have not been installed, then they would involve a low expenditure (for example when compared to the cost of drilling a well) to put the reserves on production. The developed category may be subdivided into producing and non-producing.

<u>Developed Producing Reserves</u> are those reserves that are expected to be recovered from completion intervals open at the time of the estimate. These reserves may be currently producing or, if shut-in, then they must have previously been on production, and the date of resumption of production must be known with reasonable certainty.

<u>Developed Non-Producing Reserves</u> are those reserves that either have not been on production, or they have previously been on production, but are now shut-in and the date of resumption of production is unknown.

b. <u>Undeveloped Reserves</u> are those reserves expected to be recovered from known accumulations where a significant expenditure (e.g., when compared to the cost of drilling a well) is required to render them capable of production. They must fully meet the requirements of the reserves classification (proved, probable, possible) to which they are assigned.

In multi-well pools, it may be appropriate to allocate total pool reserves between the developed and undeveloped categories or to sub-divide the developed reserves for the pool between developed producing and developed non-producing. This allocation should be based on the estimator's assessment as to the reserves that will be recovered from specific wells, facilities and completion intervals in the pool and their respective development and production status.

LEVELS OF CERTAINTY FOR REPORTED RESERVES

The qualitative certainty levels contained in the definitions in Section 5.4.1 are applicable to "individual reserves entities," which refers to the lowest level at which reserves calculations are performed, and to "reported reserves," which refers to the highest level sum of individual entity estimates for which reserves estimates are presented. Reported reserves should target the following levels of certainty under a specific set of economic conditions:

- At least a 90 percent probability that the quantities actually recovered will equal or exceed the estimated proved reserves,
- At least a 50 percent probability that the quantities actually recovered will equal or exceed the sum of the estimated proved + probable reserves,
- At least a 10 percent probability that the quantities actually recovered will equal or exceed the sum of the estimated proved + probable + possible reserves.

A quantitative measure of the certainty levels pertaining to estimates prepared for the various reserves categories is desirable to provide a clearer understanding of the associated risks and uncertainties. However, the majority of reserves estimates are prepared using deterministic methods that do not provide a mathematically derived quantitative measure of probability. In principle, there should be no difference between estimates prepared using probabilistic or deterministic methods.

Additional clarification of certainty levels associated with reserves estimates and the effect of aggregation is provided in Section 5.5.3 of the Canadian Oil and Gas Evaluation Handbook, Volume 1 – Second Edition (COGEH-1).

7. SITE VISIT

A personal field examination of these properties was not considered to be necessary because the data available from the Company's records and public sources were satisfactory for our purposes.

EXECUTIVE SUMMARY

INDEX

Forecast Prices and Costs

Table 1:	Summary of Oil & Gas Reserves
Table 2:	Summary of Net Present Values
Table 3:	Total Future Net Revenue (Undiscounted)
Table 4:	Future Net Revenue – By Production Group
Table 4A:	Reserves and Net Present Values - By Production Group
Table 5:	Product Price Forecasts and Constant Prices

Maha Energy Inc.

Summary of Oil and Gas Reserves January 1, 2017 (as of December 31, 2016)

Forecast Prices and Costs

	Company Reserves								
	Light and Medium Oil		Heavy Oil		Natural Gas [1]		Natural Gas Liquids		
Reserves Category	Gross [2] MSTB	Net [3] MSTB	Gross MSTB	Net MSTB	Gross MMscf	Net MMscf	Gross Mbbl	Net Mbbl	
PROVED									
Developed Producing	307	233	0	0	215	163	0	0	
Developed Non-Producing	0	0	0	o	0	o	0	0	
Undeveloped	448	341	0	0	314	239		0	
TOTAL PROVED	755	574	0	0	529	402	0	0	
PROBABLE	3,183	2,421	0	0	2,228	1,693	0	0	
TOTAL PROVED PLUS PROBABLE	3,938	2,995	o	0	2,757	2,094	O	D	
POSSIBLE	6,271	4,764	0	0	4,389	3,334	0	Ó	
TOTAL PROVED PLUS PROBABLE	10,208	7,758	0	0	7,146	5,429	O	D	

Reference: Item 2.1 (1) Form 51-101F1

Columns may not add precisely due to accumulative rounding of values throughout the report.

Notes: [1] Includes associated, non-associated and solution gas where applicable.

[2] Gross reserves are the total of the Company's working and/or royalty interest share before deduction of royalties owned by others.

[3] Net reserves are the total of the Company's working and/or royalty interest share after deducting the amounts attributable to royalties owned by others.

Maha Energy Inc.

Summary of Net Present Values January 1, 2017 (as of December 31, 2016)

Forecast Prices and Costs

Before Income Tax

		Net Present	Values of Future M	let Revenue						
	Discounted at									
	0 %/yr.	5 %/yr.	10 %/yr.	15 %/yr.	20 %/yr.					
Reserves Category	MS	MS	M\$	MS	M\$					
PROVED										
Developed Producing	11,606	9,787	8,456	7,499	6,665					
Developed Non-Producing	0	0	0	0	0					
Undeveloped	13,432	8,147	4,820	2,590	1,162					
TOTAL PROVED	25,038	17,934	13,276	10,089	7,827					
PROBABLE	145,610	84,231	51,514	32,742	21,329					
TOTAL PROVED PLUS PROBABLE	170,648	102,166	64,790	42,831	29,156					
POSSIBLE	348,781	190,170	113,208	71,740	47,592					
TOTAL PROVED PLUS PROBABLE PLUS POSSIBLE	519,429	292,336	177,999	114,572	76,748					

After Income Tax

Net Present Values of Future Net Revenue										
	Discounted at									
Reserves Category	0 %/yr. M\$	5 %/yr. M\$	10 %/yr. M\$	15 %/уг. М\$	20 %/yr. M\$					
PROVED										
Developed Producing	9,284	7,978	6,996	6,237	5,635					
Developed Non-Producing	0	0	0	0	0					
Undeveloped	8,533	4,725	2,312	728	(342)					
TOTAL PROVED	17,818	12,703	9,309	6,966	5,294					
PROBABLE	94,775	52,263	29,830	17,202	9,720					
TOTAL PROVED PLUS PROBABLE	112,593	64,966	39,139	24,168	15,014					
POSSIBLE	228,870	117,166	68,981	42,613	27,307					
TOTAL PROVED PLUS PROBABLE PLUS POSSIBLE	341,463	182,132	108,120	66,781	42,321					

Reference: Item 2.1 (2) Form 51-101F1

M\$ means thousands of dollars

Columns may not add precisely due to accumulative rounding of values throughout the report.

Maha Energy Inc. Total Future Net Revenue (Undiscounted) January 1, 2017 (as of December 31, 2016) Forecast Prices and Costs

Reserve Category	Revenue M\$	Royalties M\$	Operating Costs M\$	Development Costs M\$	Well Abandonment Costs M\$	Future Net Revenues BIT M\$	Income Taxes M\$	Future Net Revenues AIT M\$
Total Proved	57,276	13,765	6,960	10,313	1,200	25,038	(7,220)	17,818
Proved Plus Probable	336,213	80,483	29,920	50,063	5,100	170,648	(58,055)	112,593
Proved Plus Probable Plus Possible	908,804	218,096	64,217	98,063	9,000	519,429	(177,966)	341,463

Reference: Item 2.1 (3)(b) NI 51-101F1

M\$ means thousands of dollars

Maha Energy Inc.

Future Net Revenue By Production Group January 1, 2017 (as of December 31, 2016)

Forecast Prices and Costs

Reserve Category	Product Type	Future Net Revenue Before Income Taxes Discounted at 10%/yr. M\$
Total Proved	Light and Medium Oil (including solution gas and other by-products)	13.276
	Heavy Oil (including solution gas and other by-products)	0
	Natural Gas (including by-products but not solution gas)	0
Proved Plus Probable	Light and Medium Oil (including solution gas and other by-products)	64,790
	Heavy Oil (including solution gas and other by-products)	0
	Natural Gas (including by-products but not solution gas)	O
Proved Plus Probable Plus		-
Possible	Light and Medium Oil (including solution gas and other by-products)	177,999
	Heavy Oil (including solution gas and other by-products)	0
	Natural Gas (including by-products but not solution gas)	0

Reference: Item 2.1 (3)(c) NI 51-101F1

M\$ means thousands of dollars

Table 4A

Maha Energy Inc.

Oil and Gas Reserves and Net Present Values by Production Group January 1, 2017 (as of December 31, 2016)

Forecast Prices and Costs

			Net Present	Values @				
Product Type by Perenje Category	Oil		Gas		NGL		Value (BIT)	10%/yr.
Froduct Type by Reserve Category	Gross MSTB	Net MSTB	Gross MMscf	Net MMscf	Gross Mbbl	Net Mbbl	10% M\$	\$/BBL
Assoc & Non-Assoc Gas								and the second second
Proved								
Developed Producing	307	233	215	163	0	0	8,456	36.22
Developed Non-Producing	0	0	0	0	0	0	0	N/A
Undeveloped	448	341	314	239	0	0	4,820	14.15
Total Proved	765	574	529	402	0	0	13,276	23.13
Probable	3,183	2,421	2,228	1,693	0	0	51,514	21.28
Proved Plus Probable	3,938	2,995	2,757	2,094	0	0	64,790	21.63
Possible	6,271	4,764	4,389	3,334	0	0	113,208	23.76
Proved Plus Probable Plus Possible	10,208	7,758	7,146	5,429	0	0	177,999	22.94

Reference: Item 2.1 (3)(c) NI 51-101F1

M\$ means thousands of dollars

Columns may not add precisely due to accumulative rounding of values throughout the report. Notes: [1] Includes solution gas. 1 1-12

CHAPMAN PETROLEUM ENGINEERING LTD. CRUDE OIL HISTORICAL, CONSTANT, CURRENT AND FUTURE PRICES

January 1, 2017

Date		WTI [1] \$US/STB	Brent Spot (ICE)[2] \$US/STB	AB Synthetic Crude Price [3] \$CDN/STB	Western Canada Select [4] \$CDN/STB	Exchange Rate \$US/\$CDN
HISTOR	CAL PRICE	S				
2009		61.95	61,74	76.77	53.04	0,88
2010		79.48	79.61	80.56	66.58	0.97
2011		94.88	111.26	102.45	77.43	1.01
2012		94.05	111.63	92.56	71.70	1.00
2013		97.98	108.56	100.17	75.76	0.97
2014		93,12	99.43	101.07	82.07	0.91
2015		48.69	53.32	62.17	46.23	0.78
2016	12 mos	43.17	45.06	57.98	38.90	0.76
CONSTA	NT PRICES	6 (The average	e of the first-day-of-the-n	nonth price for the	preceding 12 months-	SEC)
		42.71	44.49	57.08	38.06	0.75
FORECA	ST PRICES					
2017		55.00	57.20	73.20	51.24	0.76
2018		60.00	62.40	75.83	56.11	0.80
2019		65.00	67.60	79.14	58.57	0.83
2020		70.00	72.80	85.17	63.02	0.83
2021		72.50	75.40	86.12	63.73	0.85
2022		75.00	78.00	89.07	65.91	0.85
2023		77.50	80.60	92.01	68.08	0.85
2024		80.00	83.20	94.95	70.26	0.85
2025		82.50	85.80	97.89	72.44	0.85
2026		85.00	88.40	100.83	74.61	0.85
2027		87.50	91.00	103.77	76.79	0.85
2028		89.25	92.82	105.83	78.31	0.85
2029		91.04	94.68	107.93	79.87	0.85
2030		92.86	96.57	110.07	81.45	0.85
2031		94.71	98.50	112.26	83.07	0.85
				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		

Constant thereafter

Notes:

[1] West Texas Intermediate quality (D2/S2) crude (40API) landed in Cushing, Oklahoma.

[2] The Brent Spot price is estimated based on historic data.

[3] Equivalent price for Light Sweet Crude (D2/S2) & Synthetic Crude landed in Edmonton.

[4] Western Canada Select (20.5API), spot price for B.C., Alberta, Saskatchewan, and Manitoba.

Table 5 (cont'd)

CHAPMAN PETROLEUM ENGINEERING LTD. NATURAL GAS & BY-PRODUCTS HISTORICAL, CONSTANT, CURRENT AND FUTURE PRICES

January 1, 2017

		Albert GRP [a 1]	AECO Spot Gas[2]	Henry Hub Gas[3]	Propane C3	Butane C4	Condensate (Pentanes Plus) C5+
Date	12.5	\$CDN/MMBTU	\$CDN/GJ	\$CDN/MMBTU	\$US/MMBTU	\$CDN/BBL	\$CDN/BBL	\$CDN/BBL
HISTOR	ICAL PRI	CES						
2009		3.85	3.65	3.99	3.94	38.34	49.34	67.52
2010		3.93	3.73	4.02	4.39	44.40	57,99	77.51
2011		3.46	3.28	3.63	3.99	50.17	70,93	97.21
2012		2.25	2.13	2.39	2.70	47.40	64.48	96.26
2013		2.98	2.82	3.17	3.84	50.09	91.43	100.72
2014		4.22	4.00	4.51	4.36	46.85	62.26	108.28
2015		2.62	2.48	2.71	2.69	6.17	36.81	59.14
2016	12 mos	2.03	1.93	2.18	3.31	6.71	29.81	55.62
CONST	ANT PRIC	ES (The average	of the first-d	ay-of-the-month pr	ice for the precedi	ng 12 months-SE	C)	
		2.00	1.90	2.20	2.50	6.60	30.02	54.47
FOREC	AST PRIC	ES						
2017		2.96	2.81	3.25	4,34	25.62	43.92	69.54
2018		3.00	2.85	3.30	4.39	26.54	45.50	72.04
2019		3.09	2.93	3.40	4.49	27.70	47.49	75.19
2020		3.28	3.11	3.60	4.69	29.81	51.10	80.91
2021		3.37	3.19	3.70	4.79	30.14	51.67	81.82
2022		3.55	3.37	3.90	4.99	31.17	53.44	84.61
2023		3.69	3.50	4.05	5.14	32.20	55.20	87.41
2024		3.91	3.71	4.30	5.39	33.23	56.97	90.20
2025		4.05	3.84	4.45	5.54	34.26	58.73	92.99
2026		4.10	3.88	4.50	5.59	35.29	60.50	95.79
2027		4.19	3.97	4.60	5.69	36.32	62.26	98.58
2028		4.28	4.06	4.70	5.79	37.04	63.50	100.54
2029		4.37	4.14	4.80	5.89	37.78	64.76	102.53
2030		4.41	4.19	4.85	5.94	38.53	66.04	104.57
2031		4.50	4.27	4.95	6.04	39.29	67.35	106.64
2032		4.64	4.40	5.10	6.19	40.07	68.69	108,76

Constant thereafter

Notes:

[1] Alberta Gas Reference Price (GRP) represents the average of all system and direct (spot and firm) sales.

[2] The AECO C Spot price, which is the Alberta gas trading price

[3] Henry Hub Spot is natural gas traded on the New York Mercantile Exchange (NYMEX).

TARTARUGA FIELD ARACAJU, BRAZIL INDEX

Discussion

Property Description Geology Reserves Production Product Prices Capital Expenditures Operating Costs Economics

Attachments

Figure 1: Land and Well Map

Table 1: Schedule of Lands, Interests and Royalty Burdens

Figure 2: Geological Maps and Figures

- a) Basin Location Map
- b) Stratigraphic Chart
- c) Paleogeographic Map
- d) Basins Evolution Map
- e) Regional Cross Section
- f) Schematic Cross Section
- g) Time Structure on Penedo Fm
- h) Depth Structure on Penedo Fm
- i) Well 1-SES-107D Log Analysis
- j) Well 6-UPP-1D Log Analysis
- k) Well 7-TTG-1DP Log Analysis

Table 2 (Oil):Summary of Gross ReservesTable 2 (Gas):Summary of Gross ReservesTable 2 (BOE):Summary of Gross Reserves

Summary of Reserves and Reservoir Parameters

a) Volumetric Reserves Determination

Figure 3: Reserve Category Map

- a) Penedo 1 Formation
- b) Penedo 2 Formation
- c) Penedo 4 Formation
- d) Penedo 6 Formation
- e) Penedo 9 Formation
- f) Penedo 10 and 11 Formations
- g) Penedo 13 Formation
- h) Penedo 14, 15, 18, 19 Formations

Chapman Petroleum Engineering Ltd.

Figure 4: Production History Graphs

- a) SES 107D 20 year Penedo 1
- b) SES 107D Penedo 1 Proved Developed Producing
- c) SES 107D Penedo 6 Proved Undeveloped
- d) SES 7TTG Penedo 6 + 6A Proced Developed Producing

Table 3: Summary of Anticipated Capital Expenditures

- a) Development
- b) Abandonment and Restoration

 Table 4:
 Summary of Company Reserves and Economics – Before Income Tax

 Table 4T:
 Summary of Company Reserves and Economics – After Income tax

Consolidated Cash Flows

- a) Proved Developed Producing Well 107D (Penedo 1) & Well 7TTG (Penedo 6)
- b) Total Proved 2 Producing wells and 2 PUDs (Various Formations)
- c) Total Proved Plus Probable Consolidated
- d) Total Proved Plus Probable Plus Possible Consolidated

TARTARUGA FIELD ARACAJU, BRAZIL DISCUSSION

Property Description

Maha Energy Inc. (the "Company") is a private Alberta based exploration and production company whose parent limited liability public company Maha Energy AB trades on the Swedish Stock Exchange. The Company has opportunities in conventional oil and gas plays in North and South America, The South American property is the Tartaruga oilfield in Aracaju, Brazil, as shown on the Land and Well Map illustrated in Figure 1.

The Company is a 75% percent owner and the operator of the Tartaruga oil field.

The Tartaruga oil field is currently in the development stages of its horizontal wellbore period of production. Production is subject to combined effective royalties of approximately 24% resulting in a net revenue interest of 56.97%.

Details of the Lands, Interests and Royalty Burdens are presented in Table 1.

Geology

The Tartaruga Block is located in the Sergipe-Alagoas Basin, as shown in Figure 2a. This basin is the northernmost of a series of passive margin basins along the South Atlantic coast of Brazil where the vast majority of Brazilian oil production occurs. The Campos Basin with production in 2013 of 1.5 million STB/d is responsible for 75% of Brazil's crude oil output. The Sergipe-Alagoas Basin produced 47,000 STB/d in 2013 in comparison.

The Sergipe-Alagoas Basin is an elongate NE-SW trending basin approximately 17,000 sq. mi. in size with 70% of that area being offshore. The deepest portion of the offshore basin has over 15,000 ft. of sedimentary section.

A stratigraphic chart of the Sergipe portion of the Sergipe-Alagoas Basin is shown in Figure 2b illustrating the Mesozoic - Cenozoic lithostratigraphic section of this basin. Also highlighted on the chart are the two targeted formations on the Tartaruga Block. They are the clastic units of the

Chapman Petroleum Engineering Ltd.

Jurassic - Lower Cretaceous Serraria Formation and the producing Lower Cretaceous Penedo Formation. These formations were deposited as part of the East Brazil Rift system that developed during the Mesozoic breakup of South America and Africa as illustrated in Figure 2c.

The Basins Evolution Map shown in Figure 2d illustrates the lithostratigraphic evolution of the East Brazil coastal basins from the Upper Jurassic to the Cretaceous Albian age. The first time slice on the right shows the Pre-Rift sedimentary deposits of the Serraria Formation consisting of alluvial/fluvial sandstones.

The Penedo Formation is shown in the third time slice, the Synrift Cretaceous Neocomian, and consists of fluvial-deltaic sandstones. The last time slice shows the development of the Post-Rift shallow carbonate platform.

The shale sections of the Synrift Barra de Itiuba Formation and the immediate Post-Rift Muribeca Formation have been established as source rocks for the Serraria and Penedo formations. The Muribeca Formation is the predominant source rock in the area and a published technical paper reports average Total Organic Content of 3.5% on tested portions of the formation.

The structural style of the sedimentary section of the Tartaruga Block is illustrated in the schematic cross section shown in Figure 2e running from onshore in the NW to offshore to the SE. Basement involved synthetic normal planar step faults are the predominate structural style.

The productive Tartaruga Field is located in a structure formed by one of these major normal step faults. A more detailed schematic cross section of the Tartaruga Field is shown in Figure 2f. It illustrates only the Penedo-Serraria sedimentary section. The cross section shows the three deviated wells that have penetrated the faulted anticlinal structure as well as the stacked oil pay in the P-1 to P-13 sands of the Penedo Formation.

The Company has obtained and interpreted a 3D seismic survey over the Tartaruga Block as shown in Figure 2g. It illustrates the time structure on the productive Penedo Formation. Very evident are a number of major NE-SW trending normal step faults. Figure 2h is a detailed view of the Tartaruga Field showing the faulted anticlinal structure which is productive in the Penedo Formation. Also highlighted are the wells drilled into the structure.

Oil well log analysis has been performed on three existing Tartaruga wells: 107D, 7TTG, and 6UPP. The Penedo sands contain low resistivity oil reservoirs with high salinity formation water.

Chapman Petroleum Engineering Ltd.

Traditional log analysis erroneously predicts high water saturation in high porosity.

The petrophysical model used in this report respects the ground truth from actual production which demonstrates that very little formation water has ever been produced from these low permeability sands. This implies that the high water content is really bound water that will not ever be produced. This is evident from low water cuts of 2% to 4%. If there is high bound water content, then there must be pore space that is not being available for oil, but only for bound water. Usually micro-porosity is associated with ineffective pore space.

Here, for the purposes of discussion, tiny particle size illite clays, or ash, or silt are assumed to be clogging the pore spaces with micro-porosity that turn a 15% sandstone into a 1 millidarcy reservoir. The result is that both porosity and water saturation must be reduced to correctly model the reservoir. Logged porosity must be adjusted to subtract micro-porosity, and calculated water saturation must be adjusted to subtract bound water.

The wells on this property demonstrate multiple stacked sand accumulations in the Penedo formation as seen on the petrophysical interpretations from the log analyses on Figures 2i to 2k.

Reserves

Total proved developed producing light oil reserves of 410 MSTB have been estimated for the Penedo-1 and Penedo-6 sands in two existing wells based on a conservative volumetric interpretation of existing production before workovers, and supported by seismic, log analysis, and historical production decline analysis.

Total proved undeveloped producing light oil reserves of 597 MSTB have been estimated for the Penedo-1 and Penedo-13 sands in one horizontal sidetrack and one offset development location also based on a conservative volumetric interpretation of existing production before workovers.

Total probable light oil reserves of 4,244 MSTB have been estimated to be drained from six dualcompletion locations 1 to 6 based on a conservative volumetric interpretation.

Total probable solution gas reserves of 3,639 MMscf have been estimated to be recovered from the six dual-completion locations 1 to 6 based on a historical average Gas-Oil ratio of 700 scf/STB.

Chapman Petroleum Engineering Ltd.

Total possible light oil reserves of 8,361 MSTB have been estimated to be drained from another six dual-completion locations 7 to 12 based on a conservative volumetric interpretation.

Total possible solution gas reserves of 5,852 MMscf have been estimated to be recovered from the six dual-completion locations 7 to 12 based on a historical average Gas-Oil ratio of 700 scf/STB.

Total Proved plus Probable plus Possible Reserves of 15,194.5 MBOE have been estimated to be recovered from the full Tartaruga Field based on a conservative volumetric interpretation and a historical average GOR of 700 scf/STB.

These oil and gas reserves are presented in Table 2 (Oil), Table 2 (Gas), and Table 2 (BOE). The reservoir parameters are presented in Table 2a: Volumetric Reserves Determination.

Reserve Category Maps showing the assignments of Proved, Probable, and Possible reserve acreages for certain Penedo Sands identified with seismic interpretations are presented on Figures 3a through 3h.

Production

This property is currently producing at approximately 250 STB/d from one well.

Production history graphs for the existing Company wells are shown on Figures 4a through 4d for the Proved case.

Production from the new drill locations in the Probable and Possible cases are expected to follow the estimated field forecasts until the lower limits of production are reached. Initial rates estimated for each well are shown on Table 2 (Oil). Similarly the gas production is based on the GOR as shown on Table 2 (Gas).

Product Prices

The product oil price commencing at \$54.70/STB for 2017 is based on the Brent (ICE) oil price forecast of \$57.20/STB minus \$2.50/STB for transportation. Likewise for gas, the forecast is based on the \$4.34/MCF Henry Hub price.

Capital Expenditures

It has been estimated that the total capital cost of the Tartaruga oil field development is \$130,750,000 USD (\$98,063,000 net to the Company), as shown in Table 3a. The capital to exploit the Proved reserves is estimated to be \$13,750,000 USD (\$10,313,000 net to the Company). The capital to exploit the Probable reserves is estimated to be \$53,000,000 USD (\$39,750,000 net to the Company). The capital to exploit the Probable reserves is estimated to be \$64,000,000 USD (\$48,000,000 net to the Company). Details for each well are presented in Table 3.

Well abandonment and restoration costs have been estimated to be \$12,000,000 USD (\$9,000,000 net to the Company) to abandon the wells and facilities as shown in Table 3b.

Operating Costs

The Tartaruga oil field is located in Aracaju Brazil, where a natural gas supply, water, and an oil refinery are relatively close by. There has been legacy drilling in the area, and infrastructure for the oil and gas industry has existed for a long time and continues to improve.

It has been estimated that the fixed operating costs per well per month for the operation is \$14,179/well/month USD. The per-unit variable operating costs for oil are estimated to be \$1.09/STB USD, and for gas \$0.50/MCF.

Economics

An economic summary is presented in Table 4 (before tax) and Table 4T (after tax), and the results of the economic analysis are presented in Tables 4a through 4d for each accumulating reserve category.

37

Table 1

Schedule of Lands, Interests and Royalty Burdens January 1 2017

Maha Energy Inc.

Tartaruga Field, Aracaju, Brazil

			Appraised	Interest	Roy	alty Bur	dens	2
Description	Rights Owned	Gross Acres	Working %	Royalty %	Basic %		Overriding %	5
SES-107 Block	[A]	13,201	75.0000 [1]	10.7000	[2]	10,0000	[3]
	Total	13,201						

Rights Owned : [A] All Petroleum & Natural Gas.

NOTES:

[1] Petrobras 25% W.I.

[2] ANP 9.7% + Land Owners 1.0%

[3] Petrobras 10% GORR payable from Company W.I. after royalty

Source: Global CCS Institute, Brazilian Atlas of CO2 Capture and Geological Storage, 2014

MAHA ENERGY INC.										
BRAZIL										
BASI	N LOCATIO	ON MAP								
JAN. 2017	JOB No. 6290	FIGURE No. 2a								

		1 Dech	0.00	5.00 m	158				-dm.NW PLinta tio costa [Osebra ta Platatorria vivol és mer SE			T
la		GEOCR	ONOL	OGIA	TUPEZA MEKTA	GROUE	EORMAT		-100	TECTO	NICS AND MAGMATISM	M
0-	PERIODO	EPOC	A	IDADE	SED				-2000 Pundo da inar	-		-0
0-	OGENO	PLIOCENO	NEO MESO	TELASARD PACEDORN ZANGLEANO MESSINIANO TORTORIAND SERRAVALIARO	2		BAR		BAR MRT MOS			-1
	NE	OIW C	60	BURDIGALIANO AQVITANIANO				IBI	WRT			-2
-		DLIGOCENC	NED ED	CHATTIANG RUPELIANC	INE		A JEIRO	CALUN				-3
	ÓGENC	ENO	NEO	PRIABONIANO BARTONIANO LUTET AND	SIVE MAR	2	MARITUB/ MOSOL			WITH CTONICS	Middle Eocene Magmatism	e
-	PALE	003	10	VPRESIANO	REGRES	ÇABUÇI			MOS CAL	ENCE V	Lower Eocen Magmatism	e -5
		PALEOCEN	NED	THANETIANO BELANDIANO DANIANO	Ľ	PIA				SUBSID		-6
-			101	NAASTRICHTIANC						ERMAL ATED AI	DRIFT	-1
-		NEO	SENDAIA	CAMPANIANO SASTOSIANO					CAL	TH	Campaniar Magmatisn	- n n1
-				TURONIANO	MARINE	ų	COTING	UIBA				-1
0-	CED			ALBIANO	RESSIVE	SERGE	CHUELO					-1
-	CRETA		GALICO		TRANSG		MURIBI	ECA			POST-RIFT	
7		8		APTIAND ALAGCAS		ЪЕ	MAC Moreto	EIÓ coo	RPT MAC			-1
-			ANC)	HAUTE-	ENTAL	CORUR	RIO PITA	DE TIUBA	RPT PDO		RIFT	1
-			NEDCOM	VALAN- JINIASO DA SERRA SERRA	CONTIN		H N	FELIZ	FLD	_		-
	URAL SICC	NEO		TITHO- DOM JOAD		PERUCABA	DANANEI	RAS	CAN BAN		PRE - RIFT	-1
0-	- CNAIMS		IANG		NENTAL	NOVA	ARACA	RÉ	ARA			1
0-	ARBO-	PENNSYLVA	NIANO		CONT	IGREA	BATIN	GΛ	BATBAT	5	SYNCLINORIUM	T
4	oz				Ļ					_		t

Source: Brazil Round 13 Presentation

★ Zones of Interest

Source: Mohriak et al, 2000

CENTRAL SOUTN ATLANTIC REGION

PALEOGEOGRAPHIC MAP

JAN. 2017

JOB No. 6290 FIGURE No. 2c

Source: Chang et al, 1992

MAHA ENERGY INC. SERGIPE BASIN BRAZIL REGIONAL CROSS SECTION JAN. 2017 JOB No. 6290 FIGURE No. 2e

Source: Rincon Energy, LLC Presentation 2015

Source: Rincon Energy, LLC Presentation 2015, p. 44

Table 2 Oil

Summary of Gross Reserves January 1 2017

Tartaruga Field, Aracaju, Brazil

Description		Initial Rate STB/d	or	API Gravity (Deg)	Ultimate Reserves (MSTB)	Cumulative Production (MSTB)	Reserves (MSTB)	Reference
LIGHT & MEDIUM OIL								
Proved Developed Produ	pnicu							
Well 107D	Penedo 1	50		38	743	571	172	Table 2a
Well 7TTG	Penedo 6	200	-	38	529	291	238	Table 2a
Total Proved D	eveloped Producing	250			1,272	862	410	
Proved Undeveloped								
Well 107D HZ Sidetrack	Penedo 1	200	Aug-17	38	117	0	117	Table 2a
Offset Development	Penedo 13	200	Aug-18	38	480	0	480	Table 2a
Total P	Proved Undeveloped				597	0	597	
	Total Proved				1,869	862	1,007	
Probable								
Probable Undeveloped								
Location 1	Penedo 1, 18	250	Jan-19	38	988	0	988	Table 2a
Location 2	Penedo 13, 11	250	Sep-19	38	705	0	705	Table 2a
Location 3	Penedo 6, 19	250	Nov-20	38	955	0	955	Table 2a
Location 4	Penedo 2, 9	250	Jan-20	38	609	0	609	Table 2a
Location 5	Penedo 4, 14	250	Mar-20	38	498	0	498	Table 2a
Location 6	Penedo 10, 15	250	May-20	38	490	0	490	Table 2a
	Total Probable				4,244	0	4,244	
Total Pr	roved Plus Probable				6,113	862	5,251	
Possible								
Possible Undeveloped								
Location 7	Penedo 1, 18	450	Aug-21	38	1,652	0	1,652	Table 2a
Location 8	Penedo 13, 11	450	Jan-21	38	1,428	0	1,428	Table 2a
Location 9	Penedo 6, 19	450	Mar-21	38	2,298	0	2,298	Table 2a
Location 10	Penedo 2, 9	450	May-21	38	1,043	0	1,043	Table 2a
Location 11	Penedo 4, 14	450	Jul-21	38	954	0	954	Table 2a
Location 12	Penedo 10, 15	450	Sep-21	38	986	0	986	Table 2a
	Total Possible				8,361	0	8,361	
Total Proved +	Probable + Possible				14,473	862	13,611	

Note: MSTB means thousands of Standard Barrels.

Table 2 Gas

Summary of Gross Reserves January 1 2017

Tartaruga Field, Aracaju, Brazil

Description		Current or Initial Rate Mscf/d		Ultimate Recovery (raw) (MMscf)	Cumulative Production (MMscf)	Reserves (raw) (MMscf)	Reserves (sales) (MMscf)	Reserves NGLs (Bbls)	Reference
Conventional Natural Ga	s (Associated and M	Ion-Associat	ed)						
SOLUTION GAS									
Probable Undeveloped									T-14-0 08
Well 107D	Penedo 1	35		520	400	120	84	11	Table 2 On
Well 7TTG	Penedo 6	140		442	204	238	167	21	Table 2 Oil
Well 107D HZ Sidetrack	Penedo 1	140	Aug-18	117	Q	117	82	11	Table 2 Oil
Offset Development	Penedo 13	140	Aug-18	480	0	480	336	43	Table 2 Oil
Location 1	Penedo 1, 18	175	Jan-19	988	0	988	692	89	Table 2 Oil
Location 2	Penedo 13, 11	175	Sep-19	705	0	705	494	63	Table 2 Oil
Location 3	Penedo 6, 19	175	Nov-20	955	0	955	668	86	Table 2 Oil
Location 4	Penedo 2, 9	175	Jan-20	609	0	609	426	55	Table 2 Oil
Location 5	Penedo 4, 14	175	Mar-20	498	0	498	348	45	Table 2 Oil
Location 6	Penedo 10, 15	175	May-20	490	0	490	343	44	Table 2 Oil
2175DCA	Total Probable			5,802	603	5,199	3,639	468	
Possible									
Location 7	Penedo 1, 18	315	Aug-21	1,652	0	1,652	1,156	149	Table 2 Oil
Location 8	Penedo 13, 11	315	Jan-21	1,428	0	1,428	1,000	129	Table 2 Oil
Location 9	Penedo 6, 19	315	Mar-21	2,298	0	2,298	1,608	207	Table 2 Oil
Location 10	Penedo 2, 9	315	May-21	1,043	0	1,043	730	94	Table 2 Oil
Location 11	Penedo 4, 14	315	Jul-21	954	0	954	668	86	Table 2 Oil
Location 12	Penedo 10, 15	315	Sep-21	986	0	986	690	89	Table 2 Oil
Constitution of the	Total Possible			8,361	0	8,361	5,852	752	
Total P	robable + Possible			14,163	603	13,560	9,492	1,220	

Note: MMCF means millions of cubic feet.

MBbls means thousands of Barrels.

Table 2 BOE

Summary of Gross Reserves January 1 2017

Tartaruga Field, Aracaju, Brazil

Description		Oil Reserves (MSTB)	Gas Reserves (MMscf)	Gas Reserves (MBOE)	NGLs Reserves (MBbls)	Total Reserves (MBOE)
Proved Developed Produ	ucing					
Well 107D	Penedo 1	172				171.8
Well 7TTG	Penedo 6	238				238.0
Total Proved Deve	eloped Producing	410				409.8
Proved Undeveloped						
Well 107D HZ Sidetrack	Penedo 1	117				117.1
Offset Development	Penedo 13	480			- A	480.0
Total Pro	ved Undeveloped	597				597.1
	Total Proved	1007				1006.9
Probable Undeveloped						
Well 107D	Penedo 1		84	14	0.011	14.0
Well 7TTG	Penedo 6		167	28	0.021	27.8
Well 107D HZ Sidetrack	Penedo 1		82	14	0.011	13.7
Offset Development	Penedo 13		336	56	0.043	56.0
Location 1	Penedo 1, 18	988	692	115	0.089	1103.7
Location 2	Penedo 13, 11	705	494	82	0.063	787.3
Location 3	Penedo 6, 19	955	668	111	0.086	1066.0
Location 4	Penedo 2, 9	609	426	71	0.055	679.6
Location 5	Penedo 4, 14	498	348	58	0.045	555.9
Location 6	Penedo 10, 15	490	343	57	0.044	546.7
	Total Probable	4244	3639	607	0.468	4850.7
Total P	roved + Probable	5251	3639	607	0.468	5857.6
Possible						
Location 7	Penedo 1, 18	1652	1156	193	0.149	1844.9
Location 8	Penedo 13, 11	1428	1000	167	0.129	1594.6
Location 9	Penedo 6, 19	2298	1608	268	0.207	2565.8
Location 10	Penedo 2, 9	1043	730	122	0.094	1165.2
Location 11	Penedo 4, 14	954	668	111	0.086	1065.1
Location 12	Penedo 10, 15	986	690	115	0.089	1101.3
	Total Possible	8361	5852	975	0.752	9336.9
Total Proved + Pr	obable + Possible	13611	9492	1582	1.220	15194.5

Note:

MMscf means millions of cubic feet.

MBbls means thousands of Barrels.

MSTB means thousands of Standard Barrels.

MBOE means thousands of Barrels of Oil Equivalent

where the conversion is 6 Mscf = 1 STB (6 Mcf : 1 bbl)

TABLE 2a: Volumetric Reserves Determination

	Wellbore	Formation	TVD Top m	TVD Bot m	TVD NET PAY	PhiE	Sw	FVF	RF %	Pi psi	TI F	Acreage acres	PIIP Mstb	CUM PROD	ROIP Mstb
Proved Oll															
Proved Producing 107D (to get pump)	107D P1	Penedo 1	2676.4	2718 0	17.97	4.09%	18 12%	1.45	22%	4182	214	320	3,376	571	172
Proved Producing 107D (To HZ Sidetrack)	1070 P1HZ	Penedo 1	2676.4	2718.0	17,97	4.09%	18 12%	1.45	3%	4182	214	370	3,904	0	117
Proved Undeveloped 7TTG (PUD)	7TTG P13 Offset Dev	Penedo 13	3035.3	3050.0	6.91	5.72%	17.64%	1.45	25%	4717	230	336	1,920	0	480
PP + PNP 7TTG + 107D	7TTG 66A	Penedo 6	2843.0	2866.4	13.29	7.98%	20.11%	1.45	25%	4426	221	163	2,424	368	238
Probable Oll	<u> </u>														
	Location 1	Penedo 1	2676.4	2718 0	17.97	4.09%	18 12%	1.45	20%	4182	214	235	2.479	0	496
	Location 2	Penedo 13	3035.3	3050 0	6.91	5.72%	17.64%	1.45	20%	4717	230	320	1.829	0	366
	Location 3	Penedo 6	2843.0	2865.4	13.29	7.98%	20.11%	1.45	20%	4426	221	120	1,785	0	357
	Location 4	Penedo 2	2759 6	2798.9	6.0	6.51%	28,54%	1.45	20%	4309	218	320	1,573	0	315
	Location 5	Penedo 4	2809.5	2833.7	11.7	5.65%	21.19%	1.45	20%	4374	220	163	1,491	0	298
	Location 6	Penedo 10	2964.4	2981.2	4.51	10.00%	25 80%	1,45	20%	4609	227	344	2,021	0	404
	Location 4 Zone 2	Penedo 9	2844,9	2964.4	3.98	7.73%	20 90%	1,45	20%	4503	224	344	1,469	0	294
	Location 2 Zone 2	Penedo 11	2981.2	2998.9	4.87	7.58%	23.89%	1.45	20%	4536	227	344	1,697	0	339
	Location 5 Zone 2	Penedo 14	3025,5	3034.0	2.69	10.09%	37.68%	1.45	20%	4697	229	336	998	0	200
	Location 6 Zone 2	Penedo 15	3034.0	3093.9	1.29	8.16%	31 25%	1,45	20%	4750	231	336	427	0	85
	Location 1 Zone 2	Penedo 18	3111.4	3154.8	7 78	7.69%	30.23%	1.45	20%	4857	234	336	2,462	0	492
	Location 3 Zone 2	Penedo 19	3154.8	3195.8	7.28	10,79%	35.50%	1,45	20%	4923	236	336	2,988	0	598 4244
Possible Oll	1														
	Location 7	Penedo 1	2676.4	2718.0	17.97	4.09%	18.12%	1.45	15%	4182	214	173	1.825	0	274
	Location 8	Penedo 13	3035.3	3050.0	6.91	5.72%	17.64%	1.45	15%	4717	230	934	5,337	0	801
	Location 9	Penedo 6	2843.0	2866.4	13.29	7.98%	20,11%	1.45	15%	4426	221	280	4,164	Ó	625
	Location 10	Penedo 2	2759.6	2798,9	6.02	6,51%	28 54%	1.45	15%	4309	218	678	3,333	0	500
	Location 11	Penedo 4	2809.5	2833.7	11.71	5.65%	21 19%	1.45	15%	4374	220	288	2,635	0	395
	Location 12	Penedo 10	2964.4	2981.2	4.51	10.00%	25,80%	1.45	15%	4609	227	848	4,981	Q	747
	Location 10 Zone 2	Penedo 9	2844.9	2964.4	3.98	7.73%	20,90%	1.45	15%	4503	224	848	3,622	D	543
	Location B Zone 2	Penedo 11	2981.2	2998.9	4.87	7.58%	23.89%	1.45	15%	4636	227	848	4,182	0	627
	Location 11 Zone 2	Penedo 14	3025.5	3034.0	2.69	10.09%	37.68%	1.45	15%	4697	229	1254	3,723	0	559
	Location 12 Zone 2	Penedo 15	3034.0	3093,9	1.29	8.16%	31 25%	1.45	15%	4750	231	1254	1.593	D	239
	Location 7 Zone 2	Penedo 18	3111.4	3154.8	7 78	7.69%	30 23%	1.45	15%	4857	234	1254	9,188	0	1378
	Location 9 Zone 2	Penedo 19	3154.8	3195.8	7.28	10.79%	35.50%	1.45	15%	4923	235	1254	11,153	o	1673 8361
Prov	ed	4 wellbores													1007
Proved+Probab	le	10 wellbores													5251
Proved+Probable+Possib	le	16 wellbores													13611

SERGIPE-ALAGOAS BASIN, BRAZIL

RESERVE CATEGORY MAP Penedo 6 Formation

JAN. 2017

JOB No. 6290 FIGURE No. 3d

Source: Rincon Energy, LLC Presentation 2015, p. 56

905.50 905.50 962.75 569.96 1962.75 5069.96 1902.20 5051.65 5068.81 5068.01 51051.65 5068.01 51051.5 3105.5 3105.5

Table 3a

Summary of Anticipated Capital Expenditures

Development

January 1 2017

Maha Energy Inc.

Tartaruga Field, Aracaju, Brazil

2			Capital Interest	Gross Capital	Net Capital
Description	Date	Operation		M\$	M\$
Proved Developed Produc	ing				
Well 107D	Jan-17	Workover and recompletion	75.0000	750	563
		Total Proved Developed Producing		750	563
Proved Undeveloped					
Well 107D HZ Sidetrack	Aug-17	Horizontal Sidetrack and Completion	75.0000	5,000	3,750
Offset Development	Aug-18	Horizontal Drilling and Subsequent Recompletion	75.0000	8,000	6,000
		Total Proved Undeveloped		13,000	9,750
		Total Proved		13,750	10,313
Probable					
Location 1 Pen1 HZ	Jan-19	Offset Horizontal Drilling, completion, and facilities	75.0000	9,000	6,750
Location 2 Pen13 HZ	Sep-19	Offset Horizontal Drilling, completion, and facilities	75.0000	9,000	6,750
Location 3 Pen6 HZ	Nov-20	Offset Horizontal Drilling, completion, and facilities	75.0000	9,000	6,750
Location 4 Pen2 HZ	Jan-20	Offset Horizontal Drilling, completion, and facilitios	75.0000	9,000	6,750
Location 5 Pen4 HZ	Mar-20	Offset Horizontal Drilling, completion, and facilities	75.0000	9,000	6,750
Location 6 Pen10 HZ	May-20	Offset Horizontal Drilling, completion, and facilities	75.0000	7,000	5,250
Offset Development	Aug-18	Subsequent Recompletion	75.0000	1,000	750
		Total Probable		53,000	39,750
		Total Proved Plus Probable		66,750	50,063
Possible					
Location 7	Aug-21	Offset Horizontal Drilling, completion, and facilities	75.0000	9,000	6,750
Location 8	Jan-21	Offset Horizontal Drilling, completion, and facilities	75.0000	9,000	6,750
Location 9	Mar-21	Offset Horizontal Drilling, completion, and facilities	75.0000	9,000	6,750
Location 10	May-21	Offset Horizontal Drilling, completion, and facilities	75.0000	9,000	6,750
Location 11	Jul-21	Offset Horizontal Drilling, completion, and facilities	75.0000	9,000	6,750
Location 12	Sep-21	Offset Horizontal Drilling, completion, and facilities	75.0000	7,000	5,250
6 Locations	Aug -22	Subsequent recompletions	75.0000	6,000	4,500
6 Locations	Aug -23	Workovers	75.0000	6,000	4,500
		Total Possible		64,000	48,000
		Total Proved Plus Probable Plus Possible		130,750	98,063

Note: M\$ means thousands of dollars.

The above capital values are expressed in terms of current dollar values without escalation. Unless details are known, drilling costs have been split 70% Intangible and 30% Tangible for tax purposes

Table 3b

Summary of Anticipated Capital Expenditures Abandonment and Restoration

January 1 2017

Maha Energy Inc.

Tartaruga Field, Aracaju, Brazil

		Capital Interest	Gross Capital	Net Capital
Description	Well Parameters	%	M\$	M\$
107D	Abandon and reclaim the land	75.0000	150	113
7TTG	Abandon and reclaim the land	75.0000	150	113
Well 107D HZ Sidetrack	Abandon and reclaim the land	75.0000	500	375
Offset Development	Abandon and reclaim the land	75.0000	800	600
Location 1	Abandon and reclaim the land	75.0000	900	675
Location 2	Abandon and reclaim the land	75.0000	900	675
Location 3	Abandon and reclaim the land	75.0000	900	675
Location 4	Abandon and reclaim the land	75.0000	900	675
Location 5	Abandon and reclaim the land	75.0000	900	675
Location 6	Abandon and reclaim the land	75.0000	700	525
Location 7	Abandon and reclaim the land	75.0000	900	675
Location 8	Abandon and reclaim the land	75.0000	900	675
Location 9	Abandon and reclaim the land	75.0000	900	675
Location 10	Abandon and reclaim the land	75.0000	900	675
Location 11	Abandon and reclaim the land	75.0000	900	675
Location 12	Abandon and reclaim the land	75.0000	700	525
and a second second	Total Abandonment and Resto	oration	12,000	9,000

Note:

M\$ means thousands of dollars.

The above capital values are expressed in terms of current dollar values without escalation.

Forecast Prices & Costs

Table 4 Summary of Company Reserves and Economics Before Income Tax

January 1, 2017

Maha Energy Inc.

Tartaruga Field, Aracaju, Brazil

	Net To Appraised Interest													
			Reser	V85	20.00		Cumulative Cash Flow (BIT) - M\$							
	Light and	Medium	Sale	s Gas	NG	L								
Description	Gross	Net	Gross	Net	Gross	Net	Undisc.	5%/year	10%/year	t: 15%/year	20%/year			
Proved Developed Producing			-			-		-						
Well 107D & Well 7TTG Penedo 1&6	307	233	215	163	0	0	11,606	9,787	8,456	7,499	6,665			
Total Proved Developed Producing	307	233	216	163	0	0	11,606	9,787	8,456	7,499	6,665			
Proved Undeveloped														
P1 HZ Stk & P13 Penedo 1&13	448	341	314	239	0	0	13,432	8,147	4,820	2,590	1,162			
Total Proved Undeveloped	448	341	314	239	0	0	13,432	8,147	4,820	2,590	1,162			
Total Proved	755	574	529	402	0	0	25,038	17,934	13,276	10,089	7,827			
Probable														
Probable Undeveloped														
Locations 1-6 Various Formations	3,183	2,421	2,228	1,693	0	0	145,610	84,231	51,514	32,742	21,329			
Total Probable Undeveloped	3,183	2,421	2,228	1,693	0	0	145,610	84,231	51,514	32,742	21,329			
Total Proved Plus Probable	3,938	2,995	2,757	2,094	0	0	170,648	102,166	64,790	42,831	29,156			
Possible														
Locations 7-12 Various Formations	6,271	4,764	4,389	3,334	0	0	348,781	190,170	113,208	71,740	47,592			
Total Possible	6,271	4,764	4,389	3,334	0	0	348,781	190,170	113,208	71,740	47,592			
Total Proved Plus Probable Plus Possible	10,208	7,758	7,146	5,429	0	0	519,429	292,336	177,999	114,572	76,748			

M\$ means thousands of United States dollars.

Gross reserves are the total of the Company's working and/or royalty interest share before deduction of royalties owned by others. Net reserves are the total of the Company's working and/or royalty interest share after deducting the amounts attributable to royalties owned by others. Columns may not add precisely due to accumulative rounding of values throughout the report.

Forecast Prices & Costs

Table 4T Summary of Company Reserves and Economics After income Tax January 1, 2017

Maha Energy Inc.

			11	Net T	o App	raise	ed Interest						
	TING		Reserve	98				Cumu	lative Cash Flo	- M\$			
	Light and Oil	ASTB	MMscf		Mbbis				Discounted at				
Description	Gross	Net	Gross	Net	Gross	Net	Undisc.	5%/year	10%/year	15%/year	20%/year		
Proved Developed Producing	2.00												
Total Proved Developed Producing (BIT)	307	233	215	163	0	0	11,605	9,787	8,456	7,499	6,665		
Company Income Tax			1.1			4	(2,322)	(1,809)	(1,460)	(1,262)	(1,030)		
Total Proved Developed Producing (AIT)	307	233	215	163	0	0	9,284	7,978	6,996	6,237	5,635		
Proved Undeveloped													
Total Proved Undeveloped (BIT)	448	341	314	239	0	0	13,432	8,147	4,820	2,590	1,162		
Company Income Tax	_						(4,899)	(3,422)	(2,508)	(1,862)	(1,504)		
Total Proved Undeveloped (AIT)	448	341	314	239	0	0	8,533	4,725	2,312	728	(342)		
Total Proved (AIT)	755	574	529	402	0	0	17,818	12,703	9,309	6,966	5,294		
Probable													
Total Probable (BIT)	3,183	2,421	2,228	1,693	0	0	145,610	84,231	51,514	32,742	21,329		
Company Income Tax			. ·		· · · ·		(50,835)	(31,969)	(21,684)	(15,540)	(11,609)		
Total Probable (AIT)	3,183	2,421	2,228	1,693	0	0	94,775	52,263	29,830	17,202	9,720		
Total Proved Plus Probable (AIT)	3,938	2,995	2,757	2,094	0	0	112,593	64,966	39,139	24,168	15,014		
Possible													
Total Possible (BIT)	6,271	4,764	4,389	3,334	0	o	348,781	190,170	113,208	71,740	47,592		
Company Income Tax	1.1	1.1			1.5	140	(119,911)	(73,004)	(44,227)	(29,127)	(20,285)		
Total Possible (AIT)	6,271	4,764	4,389	3,334	0	0	228,870	117,166	68,981	42,613	27,307		
Total Proved Plus Probable Plus Possible (AIT)	10,208	7,759	7,146	5,428	0	0	341,463	182,132	108,120	66,781	42,321		

M\$ means thousands of United States dollars.

Gross reserves are the total of the Company's working and/or royalty interest share before deduction of royalties owned by others. Net reserves are the total of the Company's working and/or royalty interest share after deducting the amounts attributable to royalties owned by others. Columns may not add precisely due to accumulative rounding of values throughout the report.

									Tal	ble \$											
EVALU	ATION OF	': Tartar	uga Piel	d, Arac	aju, B	razil -	Proved	Develop	ped Pro	oduci	ng			ERGO GLOB EFF: RUN FILE	V7.43 AL : Q1-JAN DATE: : Otar	P2 E 22-FEB- -2017 D 22-FEB- PP1.DAX	NERGY 1 2017 6 1SC:01 2017 T	SOLUTIO 290. -JAN-20: IME: 8	NS 17 PROD :00	PAGE	1 2017
WELL/ EVALU COMPA APPRA PROJE	LOCATION ATED BY NY EVALU ISAL FOR	IATED - M	ell 107D aha Bner ORECAST	(Pened gy Inc, PRICES	LO 1) &	Well 7	TTG (Pe	nedo 6)						TRAC ULT PROD DECL TOTA	T FACT POOL R UCTION INE IN L CAPI	OR ESERVES TO DAT DICATOR TAL COS		100.001 40970 N, BX PONEL 75	00 % 95 STB /A NTIAL 50 -M\$-		
														TOTA	L ABAN	DONMENT	-	31	00 -M\$-	(2032)	
	INTEREST	75 00008					ROY	ALTIES/	TAXBS	-	016										
	004.02					0	11						Sales (as							
						s	TB				*******		MMCP								
			Year	# of Wells	Price \$/STB	STB/D	Vol	Gross	Ne	e - # 0 t Wel	f Pris	MC	P001	101	Gross	y share Net					
			2017	2	54.70	250.0	91250	58438	5199		0 4	4 17	5.0	54	44	16					
			2018 2019 2020	2 2 2 2	59.90 65.10 70.30	188.0 143.0 110.0	68620 52195 40150	51465 39146 30113	3909 2973 2207	6 8 5	0 4.	9 13 9 10 9 7	1.6 0.1 7.0	48 37 28	36 27 21	27 21 16	-				
			2021 2022 2023 2024 2024	2 2 2 2 2	72,90 75.50 78.10 80.70 83,30	86.0 69.0 56.0 46.0 39.0	31390 25185 20440 16790 14235	23543 18889 15330 12593 10676	1788 1434 1164 956 811	4 9 6 6 0	0 4. 0 4. 0 5. 0 5. 0 5.	79 6 79 4 79 4 79 4 79 4 79 4 79 4 79 4 79 4 79 4 79 4 79 4 79 4 79 4 79 4 79 5	0.2 8.3 9.2 2.2 7.3	22 18 14 12 10	16 13 11 9 7	13 10 8 7 6					
			2026 2027 2028 2029	20.00	85.90 88.50 90.32 92.18	24.0 23.0 21.0 19.0	8760 8395 7665 6935	6570 6296 5749 5201	499 478 435 395	1 3 7	0 5	i 9 1 19 1 19 1 19 1 19 1	6.8 6.1 4.7 3.3	6655	544	3333					
			2030	2	96.00	16.0	5840	4928	332	7	0 6.0	14 1	1.2	4	3	2					
			Pim		•••••						******		******		******						
			REM				5365 409785	4024 307339	305 23347	7				4 287	3 215	2 163					
	= P/T =			******				===== C(YRASM	SHAR	B FUTUR	NET	REVENUE								
Year	Capital &Aband Costs	Put	ure Reve SaleGas	nue (FR Produ	cts Tot	tal St	Ro ate Ot	yalties her Mir	eral		Operat Pixed	ing C	osts le	FR	After y&Oper	Net back	Proce Other Incom	Cap'l B Costs	Aband Costs	Future	Net Re
	-MŞ-	-MŞ-	-MŞ -	-MŞ-	-M	8	MŞ	MŞN	15-	*-	-M\$-	-M\$-	\$/STI		M\$-	\$/STB	-M\$-	-M\$-	-M\$-	-M\$-	-M\$-
2017 2018 2019 2020	750	3744 3083 2548 2117	208 156 123 99		0 31	951 241 571 216	950 779 642 533	0 0 0	0 0	24.0 24.0 24.0 24.0	255 255 255 255	99 74 56 43	5.17 6.40 7.96 9.92		2648 2133 1718 1385	38.69 41.44 43.88 45.98	0000	563 0 0	0000	2096 2133 1718 1385	198 184 135 99
2021 2022 2023 2024 2025	0 0 0 0	1716 1426 1197 1016 889	79 66 55 48 41		0 13 0 14 0 13 0 10 0 10	795 192 252 064 931	431 359 301 256 224	00000	00000	24.0 24.0 24.0 24.0 24.0	255 255 255 255 255	34 27 22 18 15	12.28 14.99 18.09 21.71 25.35		1075 851 674 535 436	45.65 45.06 43.97 42.46 40.88	00000	00000	0000	1075 851 674 535 436	70 50 36 26
2026 2027 2028 2029	000000000000000000000000000000000000000	564 557 519 479	26 25 23			590 562 543	142 140 130	0000	0000	24.0	255 255 255	9987	40.29		184 178 149	27.94 28.28 25.86	000	0	000	184 178 149	7
2030	0	464	20		0 4	84	116	ō	0	24.0	255	7	53,24		105	21,39	0	o	õ	105	2
2031		420			0 4	.39	106		0 3	24.0	255	6	59.71	••••	72	16.43	•••••	••••••		72	
SUB REM TOT	750 300 1050	20741 394 21135	1011 17 1029		0 213 0 4 0 223	753 5 112 164 5	228 99 327	0	000	24.0 24.0 24.0	3828 173 4002	437 6 443		1	2260 134 2393		000	563 0 563	0 225 225	11697 -91 11606	847 -2 845
				NET PR	ESENT V	ALUE (-MŞ-)==								******		eres Pl	ROPITABL	LITY ==	******	Before
FR Af	ter Roy	6 Oper	10.	5,	42	8.01	10.08	12.0		7000	20.0				COMPAN	Y SHARE	BASIS				Tax
Proc Capit	& Other al Costs	Income.	563	5	0	0 541	536	53	0	0	/13	0			Profit.	Index	(undiad	@ 10.0			14.7
Aband	e Net Re	venue .	225 11606	1 97	06 87	68 8942	51 8456	802	9	26 7449	666	3			Pirst :	Payout	(disc. (years)	@ 5.01			15.0
					COMPAN	Y SHAR	3 01	per PR	After	c Caj	pital	Puture	e B		Cost o NPV @	Findi Findi 10.0% ((yeare) ng (\$/I \$/STB]	OE)			2.29 27.51
* Int	erest .		1st 1	75.0	25 0	коуа1	168 C	DECS RC	Y&Oper	C	Dete	NetRey	-	9	NPV @	5.01 (S/STB	24444	910		31.64
t of	Future R	evenue.			12.0	24	.0	20.1	55.9		2.5	52.4									

71

Table 4a Summary of Company Reserves and Economics After Income Tax January 1, 2017 Maha Energy Inc. Proved Developed Producing

Availab Tax Loss Claim Capity Deduct M\$ M\$ \$ 1,667 \$ \$ 1,667 \$ \$ 1,667 \$ \$ 1,667 \$ \$ 1,667 \$ \$ 1,667 \$ \$ 1,667 \$ \$ 1,667 \$ \$ 1,667 \$ \$ 1,667 \$ \$ 1,667 \$ \$ 2,667 \$ \$ 3,667 \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$	lable pital (iction Fo 125 \$ 94 \$ 71 \$ 75 \$ 43 \$ 34 \$ 28 \$	Carry orward MS 20	A Dec S S S S S S S S S	Total pplied ductions M\$ 1,792 1,761 1,718 75 43	Net Ir \$ \$ \$ \$ \$	Taxable ncome <u>M\$</u> 856 372 - 1,310	Incom M S S S	ne Tax 4\$ 291 127 -	Capi Expendit Abandor MS	tal nures & ment 5 563	After I (Undis S S	Tax Cash Flow scounted) MS 1,794 2,006	5% M\$ 1,751 1,865	10% M\$ 1,711 1,739	15% M\$ 1,673 1,627	20% <u>M\$</u> 1,638 1,526				
M\$ M\$ \$ 1,667 \$ \$ 1,667 \$ \$ 1,667 \$ \$ 1,667 \$ \$ 1,667 \$ \$ 1,667 \$ \$ 1,667 \$ \$ 1,667 \$ \$ 1,667 \$ \$ 1,667 \$ \$ 1,667 \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$	125 \$ 94 \$ 71 \$ 75 \$ 43 \$ 34 \$ 28 \$	<u>M</u> \$ 20	\$ \$ \$ \$ \$	M\$ 1,792 1,761 1,718 75 43	* * * * *	M\$ 856 372 - 1,310	S S S	291 127 -	\$	563	s s	MS 1,794 2,006	M\$ 1,751 1,865	M\$ 1,711 1,739	M\$ 1,673 1,627	M\$ 1,638 1,526				
\$ 1,667 \$ \$ 1,667 \$ \$ 1,667 \$ \$ - \$	125 \$ 94 \$ 71 \$ 75 \$ 43 \$ 34 \$ 28 \$	20	\$ \$ \$ \$ \$ \$ \$	1,792 1,761 1,718 75 43	* * * * *	856 372 - 1,310	• • • •	291 127 -	\$	563	s s	1,794 2,006	1,751 1,865	1,711 1,739	1,673 1,627	1,638 1,526				
\$ 1,667 \$ \$ 1,667 \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$	94 \$ 71 \$ 75 \$ 43 \$ 34 \$ 28 \$	20	\$\$ \$\$ \$\$ \$\$	1,761 1,718 75 43	* * * *	372 - 1,310	5 5 4	127			\$	2,006	1,865	1,739	1,627	1,526				
\$ 1,667 \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$	71 \$ 75 \$ 43 \$ 34 \$ 28 \$	20	5 5 5 5	1,718 75 43	5 5 5	- 1,310	5				¢.									
\$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$	75 \$ 43 \$ 34 \$ 28 \$		5 5 5	75 43	5	1,310	e .				9	1,718	1,521	1,354	1,211	1,089				
s - s s - s s - s s - s	43 \$ 34 \$ 28 \$		s 5	43			4	445			\$	940	792	673	576	496				
s - s s - s s - s	34 \$ 28 \$		\$		19.1	1,032	\$	351			s	724	581	472	386	319				
s - s s - s	28 \$	-		34	s	817	s	278			S	573	438	339	266	210				
5 - 5			\$	28	\$	646	\$	220			\$	454	331	245	183	139				
	23 3	e 🖃	\$	23	\$	512	\$	174			\$	361	250	177	127	92				
s - s	19 \$	the -	\$	19	\$	417	\$	142			\$	294	194	131	90	62				
s - s	12 \$	E 14	\$	12	s	172	\$	58			\$	126	79	51	33	22				
s - s	11 \$	6 m	\$	11	\$	167	5	57			\$	121	73	45	28	18				
s - s	10 \$	+	\$	10	\$	139	\$	47			\$	102	58	34	20	13				
s - s	10 \$	i Gel	\$	10	\$	108	5	37			\$	81	44	25	14	8				
s . s	9 \$	1.41	\$	9	\$	96	5	33			\$	72	37	20	11	6				
s - s	8 \$	() (H)	\$	8	\$	64	\$	22			\$	50	25	13	7	4				
s - s	8 5	1.0	\$	8	\$	126	\$	43	\$	225	.s	134	-63	-31	-15	-8				
\$ \$ \$	- 5 - 5 - 5	- \$ 9 \$ - \$ 8 \$ - \$ 8 \$	- \$ 9\$. - \$ 8\$. - \$ 8\$.	• \$ 9 \$ • \$ - \$ 8 \$ • \$ - \$ 8 \$ • \$	- \$ 9 \$ - \$ 9 - \$ 8 \$ - \$ 8 - <u>\$ 8 \$ - \$ 8</u>	- \$ 9\$- \$ 9\$ - \$ 8\$- \$ 8\$ - \$ 8\$- \$ 8\$	\$ 9\$.\$ 9\$ 96 -\$ 8\$.\$ 8\$ 64 -\$ 8\$.\$ 8\$ 126	\$ 9 \$ 9 \$ 96 \$ - \$ 8 \$ 5 8 \$ 64 \$ - \$ 8 \$ 5 8 \$ 64 \$ - \$ 8 \$ 5 8 \$ 126 \$	\$ 9 \$ 9 \$ 96 \$ 33 - \$ 8 \$ 5 8 \$ 64 \$ 22 - \$ 8 \$ 5 8 \$ 126 \$ 43	\$ 9 \$ 9 \$ 96 \$ 33 - \$ 8 \$ 5 8 \$ 64 \$ 22 - \$ 8 \$ 5 8 \$ 64 \$ 22 - \$ 8 \$ 5 8 \$ 126 \$ 43 \$	\$ 9 \$ 9 \$ 96 \$ 33 - \$ 8 \$ 5 9 \$ 96 \$ 33 - \$ 8 \$ 5 8 \$ 64 \$ 22 - \$ 8 \$ 126 \$ 43 \$ 225	S 9 \$ 9 \$ 96 \$ 33 \$ - \$ 8 \$ \$ 9 \$ 96 \$ 33 \$ - \$ 8 \$ \$ \$ 8 \$ 64 \$ 22 \$ - \$ 8 \$ \$ 64 \$ 22 \$ - \$ 8 \$ 126 \$ 43 \$ 225 \$	\$ 9 \$ 9 \$ 96 \$ 33 \$ 72 - \$ 8 \$ 5 8 \$ 64 \$ 22 \$ \$ 50 - \$ 8 \$ 5 8 \$ 126 \$ 43 \$ 225 \$ 134	\$ 9 \$ 9 \$ 96 \$ 33 \$ 72 37 - \$ 8 \$ 5 9 \$ 96 \$ 33 \$ 72 37 - \$ 8 \$ 64 \$ 22 \$ 50 25 - \$ 8 \$ 126 \$ 43 \$ 225 \$ 134 -63	\$ 9 \$ 9 \$ 96 \$ 33 \$ 72 37 20 - \$ 8 \$ 54 \$ 22 \$ 50 25 13 - \$ 8 \$ 64 \$ 22 \$ 50 25 13 - \$ 8 \$ 126 \$ 43 \$ 225 \$ 134 -63 -31	\$ 9 \$ 9 \$ 96 \$ 33 \$ 72 37 20 11 - \$ 8 \$ \$ 9 \$ 96 \$ 33 \$ 72 37 20 11 - \$ 8 \$ \$ 64 \$ 22 \$ \$ 50 25 13 7 - \$ 8 \$ 126 \$ 43 \$ 225 \$ 134 -63 -31 -15				
									Úð.	Table 4	ъ									
-----------	-------------------	-----------------	------------	---------	----------------	------------------	-------------	------	-------------	----------	-------------	------------------	------------	--	--	--	------------------------------------	----------------------	---------------	-----------
EVALU	ATION OF:	Tartarug	a Pielo	i, Arac	aju, B	razil -	Total	Prov	ed				1	RGO V7.43 SLOBAL : SFF:01-JAN RUN DATE: FILE: Otar	P2 E 22-PEB- -2017 D 22-FEB- TP1.DAX	NERGY 5 2017 62 ISC:01- 2017 TI	OLUTION 90. JAN-201 MB: 8	NS 17 PROD :01	PAGE	1 2017
WELL/	LOCATION	- 2 P	roduci	ng well	s and :	2 PUDs	(Variou	e Fo	rmation	e)				TRACT FACT	OR	1.0	100.000	1 00		
COMPA	NY EVALUA	TBD - Mah	a Bner	Ty Inc.									1	JLT POOL R PRODUCTION	ESERVES	8	100 N;	07 MSTB		
APPRA	ISAL FOR	- FOR	BCAST I	PRICES	& COST	9							1	DECLINE IN TOTAL CAPI	TAL COS	TS -	EXPONER 137	NTIAL 50 -M\$-		
	1.4.5												5	TOTAL ABAN	DONMENT	15	160	00 -M\$-	(2032)	
	INTEREST						ROY	ALTI	ES/TAXE	5										
	AVG WI 7	5,0000%					STA	тв	+ AVG C	ROWN 24	.031									
						01	LI					5	Sales Ga	10						
				******	******								Deel							
			4.00	# of	Price	POC		COM	pany sh	# c	f Pri	ce	POOL	compan	y share					
			Year	Welle	\$/STB	STB/D	Vol	Gr	088	Net Wel	18 \$/MC	P MC1	P/D VC	SI Gropp	Net					
			2017	3	54.70	318.0	115		87	66	0 4.	34 223	2.6	81 61	46	6 - E				
			2018		59.90 65,10	371.0	135		102	77 80	0 4.	39 259 49 269	9.7	95 71 98 74	54					
			2020	4	70.30	304.0	111		83	63	0 4.	69 213	2.8	78 58	44					
			2021 2022	4	72.90	246.0 203.0	90		67 56	51 42	0 4.	79 173 99 143	2.2	63 47 52 39	36					
			2023 2024	3	78.10 80.70	163.0	59 51		45 39	34 29	0 5.	14 114 39 98	4.1 8.7	42 31 36 27	24					
			2025	3	83.30	123.0	45		34	26	0 5.	54 80	5.1	31 24	18					
			2026	2	85,90	98.0	36		27	20	0 5.	59 61 69 63	8.6	25 19 22 17	14					
			2026	2	90.32	79.0	29		22	16	0 5.	79 55	5.3	20 15	12					
			2030	2	94.07	63,0	23		17	13	0 5.	94 4	4,1	16 12	9					
			2031	2	96.00	56.0	20		15	12	0 6.	04 35	9.2	14 11		5 C				
			SUB				988		741	563			-	692 519 13 10	394	ł.				
			TOT				1007		755	574				705 529	4.02	£				
	- P/T								= COMPA	NY SHAF	S PUTUR	NBT I	REVENUE		******					
	Capital	Putur	e Reve	nue (PR)		Ro	yalt	ies		Opera	ting Co	Dece			Proca			Future	Net Re
Year	&Aband - Costs	oil s	aleGas	Produ	CLE TO	tal Sta	ate Ot	her	Minera	1	Pixed	Variab	le	FR After RoyaCper	Net back	Other	Cap'l Costs	Aband Costs	Undisc	10.04
	-MŞ-	-M\$-	-M\$-	-M\$-	-M	ş•	45-	M\$-	-M\$-		-M\$-	-M9-	\$/STB	-M\$-	\$/STB	-M\$-	-MŞ-	-MŞ-	-MŞ-	-MŞ-
2017	5750	4762	264		0 5	026 12	208	0	0	24.0	383	125	5.84	3310	38.02	0	4313	0	-1002	-95
2019	0	6861	331		0 7	192 1	729	0	0	24.0	510	146	6.26	4802	45.56	0	0000	0	4802	376
2020	0	5850	273		0 6	124 14	172	0	0	24.0	510	120	7.57	4022	48.33	0	0	0	4022	288
2021	0	4909	194		0 5	135 13 390 10	234	0	0	24.0	510	97	9.02	3294 2744	48.91 49.38	0	0	0	3294 2744	214
2023	0	3485	161		0 3	645 I 261 7	876 784	0	0	24.0	383	64 56	10.02	2322 2039	52.04	0	0	0	2322 2039	125
2025	0	2805	131		0 2	935	705	0	0	24.0	383	48	12.61	1799	53.42	0	0	0	1799	80
2026 2027	0	2304 2132	105		0 2	109 5 228 5	579 535	0	0	24.0	255	39 35	10.95	1537 1403	57,27	0	0	0	1537 1403	62 51
2028	0	1953 1766	88		0 2	041 4 845 4	90	0	0	24.0	255	31 28	13.24	1264	58.45	0	0	0	1264	42
2030	0	1622	72		0 1	594 4	107	0	0	34.0	255	25	16.24	1007	58.38	0	0	0	1007	27
2031	0	1472	65		0 1	536 3	169	0	0	24.0	255	22	18.09	690	58.05	0	0	0	890	22
SUB	13750	53317	2542		0 55	858 134	124	0	0	24.0	5615	1067		35752		0	10313	0	25439	1336
REM	1600 15350	1357 54674	60 2602		0 14	17 3 276 137	141 765	0	0	24.0	25A 5073	20 1087		798 36550		0	10313	1200	-402 25038	-9
										1.1.1.1		199								
*****			*****	NET PR	ESENT 1	VALUE (-	-M\$-)==	****	*******					******	*******	ware PF	OFITABL	ILITY =:		Before
Disco	unt Rate		10.	5.	01	8.0%	10.0%		12.0%	15.04	20.			COMPAN	Y SHARE	BASIS				Tax
FR Af	& Other In	Oper. ncome.	36550 0	282	83 : 0	24781	22863	98	21206 0	19113	164	00		Rate o Profit	f Retur	n (%) . (undisc				107.3
Capit	al Costs	stø	10313 1200	97	85 63	9496 364	9313 274		9137 207	8887	85	01 71				(diec.	@ 10.01	k) :		1.4
Futur	e Net Rev	enue ,	25038	179	34	14921	13276		11862	10085	78	27		Pirst Total	Payout	(years)				2.6
****	*********				COMPA	WY SHARE	3 =====	per	FR AF	ter Ca	pital	Puture		Cost o	f Findi	ng (\$/E \$/STB)	OB)			13.65
			let 1	lear A	verage	Royalt	ies C	osts	Roy&O	per C	osts	NetRev	·	NPV @	5,0% (\$/STB)	414.11	1000		23.75
1 Int	erest			75.0	75.0						10.0									
	Furnie Me	venue.				43.		12.0	03		10.0	43.7								

73

Table 4b Summary of Company Reserves and Economics After Income Tax January 1, 2017 Maha Energy Inc. Total Proved

Year	Net Operating income	Ta	ax Loss Claim	A	vailable Capital eduction	F	Carry orward	Tota De	al Applied ductions	Net	t Taxable ncome	In	come Tax	Expe Aba	Capital enditures & ndonment	After Tax Cash & Flow et (Undiscounted) M\$		5%	10%	15%	20%
_	M\$	-	MS	_	M\$	_	M\$	_	MS	_	MS	-	M\$	-	M\$	_	MŞ	M\$	MŞ	M\$	MŞ.
2017	3310	\$	1,667	\$	926	\$	- 14	\$	2,593	\$	717	\$	244	\$	4,313	-\$	1,247	-1,217	-1,189	-1,163	-1,138
2018	4202	5	1,667	\$	1,747	\$		s	3,414	\$	788	\$	268	\$	6,000	-\$	2,066	-1,920	-1,791	-1,675	-1,572
2019	4802	\$	1,667	\$	1,647	\$		\$	3,313	\$	1,489	\$	506			\$	4,296	3,803	3,385	3,029	2,723
2020	4022	\$	÷.	\$	1,208	\$		\$	1,208	\$	2,814	\$	957			\$	3,065	2,584	2,196	1,879	1,619
2021	3294	\$	•	\$	925	\$	÷.	\$	925	\$	2,369	\$	805			\$	2,489	1,998	1,621	1,327	1,096
2022	2744	\$		\$	735	\$	1.15	\$	735	\$	2,009	\$	683			\$	2,061	1,576	1,220	955	756
2023	2322	\$	÷.	\$	518	\$		\$	518	\$	1,804	\$	613			\$	1,709	1,244	920	689	522
2024	2039	\$		\$	456	\$		\$	456	\$	1,583	\$	538			\$	1,501	1,041	734	526	382
2025	1799	\$		\$	402	\$		\$	402	Ş	1,397	\$	475			\$	1,324	875	589	404	281
2026	1537	\$	i e i	\$	350	\$	1.5	\$	350	\$	1,187	\$	404			\$	1,133	713	458	300	201
2027	1403	\$		\$	310	\$		\$	310	\$	1,093	\$	372			\$	1,031	618	379	238	152
2028	1264	\$		\$	274	\$		\$	274	\$	990	\$	337			\$	927	529	310	186	114
2029	1119	\$		\$	242	\$	4	\$	242	\$	877	\$	298			\$	821	446	249	143	84
2030	1007	\$		\$	214	\$	1.2	\$	214	\$	793	\$	269			\$	738	382	204	112	63
2031	890	5	. •	\$	190	\$	1.2	\$	190	\$	700	\$	238			\$	652	321	164	86	46
2032	798	s		\$	168	\$		\$	168	\$	630	\$	214	\$	1,200	-\$	616	-289	-141	-71	-37
Total	36,552		5000		10,313				15,313		21,239		7,221		11,513		17,818	12,703	9,308	6,966	5,294
									and the second		 A set of the set of										

Combined Tax Rate Rate 34%

74

Chapman Petroleum Engineering Ltd.

Discounted @

Table 4d

EVALUATION OF: Maha Energy Inc. Total Proved Plus Probable Cons.

TOTAL

4410 3592

Before

Tax

70.3

3.1

2.2 4.7 4.9

12.54 14.73 23,23

10749 9600

õ

ò

0 50063 0 137674 0 0 5100 32974 0 50063 5100 170648

α

DASSESSMERTER PROFITABILITY SUCCESSION

EVALUATED BY COMPANY EVALUATED - Maha Energy Inc. APPRAISAL FOR -- FORECAST PRICES & COSTS PROJECT

13652

321475

ò

Discount Rate

Future Net Revenue .

SUB REM TOT

.01

50063

-75.0

14262 12853

BARRANE AND NET PRESENT VALUE (-MS-)

0 273250 65671 0 62963 14812 0 336213 80483

8.01

COMPANY SHARE

75.0

Oper 1st Year Average Royalties Costs

23.9

ō

5.01

10.0%

ō.

D 24.0

D

24.0

24.0

12.01

8.9 67.2

Roy&Oper

24.0 24.0 24.0

														TOT	AL CAPIT	CAL COS	TS -	6675 600	0 -M\$- 0 -M\$-		
						011 MST	в						Sale	e Gas CF							
					*****	Popl		Company	Ghard				Pool		Company	Share					
				# of	Price			company	onare	# 05	Pri	CA			company						
			Year	Wells	\$/STB	STB/D	Vol	Grose	Net	Well	a \$/MC	F M	CP/D	Vol	Gross	Net					
				*****							******										
			2017	3	54.70	318.0	116	87	66		0 4.	34 2	22.6	81	61	46					
			2018	4	59.90	371.0	135	102	77		0 4.	39 2	59.7	95	71	54					
			2019	6	65.10	677.0	247	185	141	6 - C	0 4.	49 4	73.9	173	130	99					
			2020	10	70,30	1329,0	485	364	276	5	0 4.	69 9	30.3	340	255	193					
			2021	10	72 90	1519.0	554	416	316		0 4	79 10	63.3	388	291	221					
			2022	10	75.50	1327.0	484	363	276	2	0 4	99 90	28.9	339	254	193					
			2023	9	78.10	1156.0	422	316	240)	0 5.	14 8	09-2	295	222	168					
			2024	9	80,70	1017.0	371	278	211	6 C	0 5.	39 7	11.9	260	195	148					
			2025	9	83.30	897.0	327	246	187	,	0 5.	54 6	27.9	229	172	131					
			2026	я	85.90	781.0	285	214	163		0 5.	59 5	46.7	200	150	114					
			2027	8	88.50	691.0	252	189	144		0 5.	69 4	83.7	177	132	101					
			2028	8	90.32	612.0	223	168	127		0 5.	79 4	28.4	156	117	89					
			2029	8	92.18	541.0	197	148	113	i	0 5.	89 3	78.7	138	104	79					
			2030	8	94.07	478.0	174	131	99	1	0 5.	94 3	34,6	122	92	70					
			2031	8	96.00	423.0	154	116	88		0 6.	04 2	96.1	108	81	62					
			1.100				5.00							1.5							
			SUB				4430	3323	2524					3101	2326	1767					
			REM				021	615	471					574	431	327					
			TOT				5251	3938	2995					3675	2757	2094					
1.00	= P/T =	********						00	MPANY	SHARS	PUTUR	E NET	REVE	NUR							
	Contral	Dut	Datta				Des				-		Casha				Deiner			The Roberts	Not Day
1.	Aband	Fut	ure keve	Hue (FR			ROY	arcies			opera	LING	CONCH		P After	Net	Other	Canti	aband	Future	Nec Nev
Year	Costs	011	SaleGas	Produ	cts To	tal Crow	n oth	er Min	eral		Fixed	Varia	ble	F	ov&Oper	back	Income	Costa	Costa	Undiec	10.0%
1000	-M\$-	-M\$-	-M\$-	-M\$-	-M	\$M\$	1	19M	\$	· *-	-M\$-	-M\$	- \$/1	BOB	-M\$-	\$/BOB	-M\$-	-M\$-	-M\$ -	-M\$-	-M\$-
2017		1770																			
2017	9750	4762	264		0 5	026 120	8	0	0	9.0	383	12	5 5	23	3310	34,05	0	4313	0	-1002	-956
2019	18000	12045	582		0 12	550 155	n	o l	0 0	4.0	266	16	7 4	99	8575	41 44	0	13500	0	-4925	-3891
2020	34000	25576	1194		0 26	771 643	4	0	0 2	4.0	1276	52	4 4	.43	18537	45.63	õ	25500	0	-6963	-4988
2027	0	30314	1394		0 31	708 769	0	n		0.4	1276	6.0		04	22213	47 84				22212	14465
2022	0	27427	1269		0 28	695 689	6	ñ	0 0	4.0	1276	52	1 4	44	20000	49.30	0	0	0	20000	11840
2023	0	24715	1139		0 25	854 621	3	0	0 2	4.0	1148	45	6 4	54	18036	51.04	0	ő	0	18036	9707
2024	0	22467	1050		0 23	518 565	2	0	0 2	4.0	1148	40	1 4	.98	16316	52.48	ő	0	0	16316	7983
2025	0	20455	952		0 21	407 514	5	0	0 2	4.0	1148	35	4 5	.48	14760	53.83	0	0	0	14760	6565

....

20.01

31101

Puture

NetRev

50.8

24.0 15058 23.5 9191 23.9 24249

15.0%

PR After Capital

Costs

14.9

241 213

....

5.57

6.12

7.46

8.28

9.18

10749 9600

55.53

56.79 57.46 58.05 58.55

59.00

COMPANY SHARE BASIS

Profit Index

Rate of Return (%)

 Cd18C. @ 5.0%).

 Pirst Payout (years)

 Total Payout (years)

 Cost of Pinding (\$/BOB)

 NPV @ 10.0% (\$/BOB)

 NPV @ 5.0% (\$/BOB)

D

ø

Table 4c

Summary of Company Reserves and Economics After Income Tax January 1, 2017 Maha Energy Inc. Proved Plus Probable

																			_	Discou	nted @	
Year	Net Operating income MS	D	ax Loss Claim M S	D	Available Capital eduction M\$	F	Carry orward M\$	Te C	otal Applied Deductions MS	N	et Taxable Income MŚ	In	come Tax MS	Exp AD	Capital enditures & andonment MS	Afi (Un	ter Tax Cash Flow tdiscounted) M\$	a.	5% MS	10% MS	15% MS	20% M\$
2017	3310	5	1,667	\$	926	\$	1.00	\$	2,592	s	718	5	244	\$	4,313	-5	1,247	0,50	-1,217	-1,189	-1,163	-1,138
2018	4202	\$	1,667	\$	1,786	\$		5	3,453	\$	749	5	255	\$	6,750	-5	2,803	1.50	-2,605	-2,429	-2,273	-2,132
2019	8575	\$	1,667	\$	2,763	\$	1.0	\$	4,430	\$	4,145	\$	1,409	\$	13,500	-\$	6,334	2.50	-5,607	-4,991	-4,466	-4,016
2020	18537	\$	14	\$	4,754	5	1	s	4,754	\$	13,783	\$	4,686	\$	25,500	-\$	11,649	3.50	-9,820	-8,345	-7,143	-6,154
2021	22213	\$		\$	5,267	\$	14	5	5,267	\$	16,946	\$	5,762			\$	16,451	4.50	13,208	10,714	8,771	7,242
2022	20000	5	~	\$	4,569	\$		\$	4,569	\$	15,431	\$	5,247			\$	14,753	5.50	11,281	8,734	6,840	5,412
2023	18036	\$		\$	3,904	5		\$	3,904	5	14,132	\$	4,805			\$	13,231	6.50	9,635	7,121	5,334	4,045
2024	16316	\$	÷.	\$	3,446	\$	- 4	5	3,445	\$	12,870	\$	4,376			\$	11,940	7.50	8,281	5,842	4,185	3,042
2025	14760	\$	-	\$	3,042	5		\$	3,042	\$	11,718	\$	3,984			\$	10,776	8.50	7,118	4,793	3,285	2,288
2026	13258	\$		\$	2,681	5	1.6	5	2,681	\$	10,577	\$	3,596			\$	9,662	9.50	6,078	3,907	2,551	1,709
2027	11996	\$	÷.	\$	2,368	\$	- é .	\$	2,368	\$	9,628	\$	3,274			\$	8,722	10.50	5,226	3,206	2,011	1,286
2028	10749	ŝ		\$	2,092	5	18	5	2,092	\$	8,657	\$	2,944			\$	7,805	11.50	4,454	2,608	1,564	959
2029	9600	\$	÷.,	\$	1,847	s		5	1,847	\$	7,753	\$	2,636			\$	6,964	12,50	3,784	2,116	1,214	713
2030	8555	\$	÷.	\$	1,632	5	÷.	5	1,632	\$	6,923	\$	2,354			\$	6,201	13.50	3,209	1,713	940	529
2031	7629	\$		\$	1,441	\$	18	\$	1,441	s	6,188	\$	2,104			\$	5,525	14,50	2,723	1,387	728	393
2032	6798	5	-	\$	1,273	5	1.1	s	1,273	\$	5,525	5	1,878	\$	1,200	\$	3,720	15.50	1,746	849	426	220
2033	5206	\$		\$	958	5	- 3	\$	958	\$	4,248	\$	1,444			\$	3,762	16.50	1,682	781	375	186
2034	4517	\$		\$	846	\$	1.8	\$	846	5	3,671	s	1,248			\$	3,259	17.50	1,392	617	283	135
2035	3891	\$	-	5	747	5	12	s	747	\$	3,144	\$	1,069			5	2,822	18,50	1,144	484	213	97
2036	3348	\$	- ÷	\$	660	5	- ÷	5	660	\$	2,688	\$	914			\$	2,434	19.50	940	379	159	70
2037	2868	8		\$	583	\$	18	\$	583	5	2,285	Ś	777			\$	2,091	20,50	769	296	119	50
2038	2450	\$		\$	514	5	1.0	5	514	\$	1,936	\$	658			5	1,792	21.50	528	231	89	36
2039	2074	\$	÷	\$	454	ŝ	- 64	\$	454	\$	1,520	\$	551			\$	1,523	22.50	508	178	66	25
2040	1740	\$		\$	401	\$	1.8	\$	401	5	1,339	\$	455			\$	1,285	23.50	408	137	48	18
2041	1448	\$		\$	354	5	3	\$	354	\$	1,094	\$	372			\$	1,076	24.50	326	104	35	12
2042	1176	5	14	\$	313	5	1.4	\$	313	\$	863	\$	294			\$	882	25,50	254	78	25	8
2043	1202	\$		\$	275	5	(P)	\$	276	\$	925	\$	315			\$	887	26.50	244	71	22	7
2044	1356	ŝ	141	5	155	\$	8	\$	166	\$	1,190	\$	405	\$	3,900	-5	2,949	27.50	-771	-214	-63	-20
Total	225,810		5000		50,062				55,062		170,748		58,054		55,163		112,593		64,966	39,139	24,168	15,014
										1. Jan 199												

Combined Tax Rate Rate 34%

76

Chapman Petroleum Engineering Ltd. _

EVALUATED BY -COMPANY EVALUATED - Maha Energy Inc. APPRAISAL FOR -PROJECT - FORECAST PRICES & COSTS

		Leonici	June	O1 MS	1 ТВ					Sales MMC	Gas F				
	2			Poo	1	Company	Share			Pool		Company	Share		
Yea	- 1	# of Wells	Price S/STR	STB/D	Vol	Group	Not	# OF	Price S/MCF	MCR/D	Vol	Grose	Not		
	÷					*******	******		w/ mer						
201	7	3	54.70	318.0	116	87	66		4.74	222 6	81	61	46		
201	8	4	59.90	371.0	135	102	77	0	4.39	259.7	95	71	54		
201	9	6	65.10	677.0	247	185	141	0	4.49	473.9	173	130	99		
202	0	10	70.30	1329.0	485	364	276	0	4.69	930.3	340	255	193		
202	1	16	72.90	2982.0	1088	816	620	Ó	4.79	2087.4	762	571	434		
202	2	16	75.50	3732.0	1362	1022	776	0	4.99	2612.4	954	715	543		
202	3	15	78.10	3298.0	1204	903	686	0	5.14	2308.6	843	632	480		
202	4	15	80.70	2924.0	1067	800	608	0	5,39	2046.8	747	560	426		
202	5	15	83,30	2596.0	948	711	540	0	5,54	1817.2	663	497	378		
202	6	14	85.90	2294.0	837	628	477	0	5.59	1605.8	586	440	334		
202	7	14	88,50	2038.0	744	558	424	0	5,69	1426.6	521	391	297		
202	8	14	90.32	1812.0	661	496	377	0	5,79	1268.4	463	347	264		
202	9	14	92,18	1610.0	588	441	335	0	5.89	1127.0	411	309	234		
203	0	14	94.07	1430.0	522	391	297	0	5.94	1001.0	365	274	208		
203	ı	14	96.00	1271.0	464	348	264	0	6.04	889.7	325	244	105		
	1							*****					******		
SUB					10469	7852	5965				7328	5496	4175		
RBM					3142	2357	1794				2200	1650	1253		
TOT					13611	10208	7758				9528	7146	5429		

Table 4d

		Company	y Share													Puture Ne	et Revenu	e	
	1	uture Re	venue (FI	R)	Roya	lties	Wellhe	ad Taxes	oper	Costs		Proca			Undis	counted	1	0.01	
Year	0i1 -M\$-	SaleGas -MŞ-	Producte -M\$-	9 Total -M\$-	State -M\$-	Other -M\$-	Sev -M\$-	Ad-val -M\$-	Fixed -M\$-	Variabi -MŞ-	Roy&Oper - M\$-	Income -M\$-	Capital Costa -M\$-	Costa -MŞ-	Annual -M\$-	Cum -M\$-	Annual -M\$-	Cum -M\$-	
0.8	1.000						500 m	11002											
2017	4762	264	0	5026	1208	0	0	0	383	125	5 3310	0	4313	0	-1002	-1002	-956	-956	
2018	6084	312	0	6396	1537	0	0	0	510	146	4202	D	6750	0	-2548	-3551	-2209	-3164	
2019	12065	582	0	12647	3040	0	0	0	766	267	7 8575	0	13500	0	-4925	-8475	-3881	-7045	
2020	20076	1194	0	26771	6434	0	9	0	1276	524	18537	0	25500	0	-6963	-15439	-4988	-12033	
2021	59510	2737	0	62247	14960	0	0	0	2042	1176	44070	Ő.	39000	0	5070	-10369	3302		
2022	77133	3569	0	80702	19395	0	0	Ő	2042	1471	57794	ö	4500	0	53294	42925	31551	22820	
2023	70511	3248	0	73759	17727	0	0	0	1914	1300	52818	0	4500	0	48318	91243	26005	48825	
2024	64596	3020	0	67616	16250	0	0	0	1914	1153	48299	0	0	ō	48299	139542	23632	72456	
2025	59198	2756	0	61953	14889	0	0	0	1914	1023	44127	0	0	o	44127	183668	19627	92084	
2026	53944	2457	0	55401	13555		0	0	1787	one	40155				-		10120	100101	
2027	49374	2222	D	51596	12400	ő	ő	õ	1787	803	36606	ñ	0	ä	35506	260430	13456	121777	
2028	44802	2010	0	46812	11251	0	0	ő	1787	714	33061	ň	ő	0	33061	201401	11048	122826	
2029	40627	1817	D	42444	10201	0	ō	0	1787	635	29822	ň	ň	0	29822	123313	9060	141986	
2030	36825	1628	0	38453	9241	0	0	0	1787	564	26861	o	õ	0	25861	350174	7419	149304	
2031	33402	1471	0	34973	8381	0	0	0	1787	501	24204	0	0	0	24204	374378	6077	155381	
ana	ETRADE	20280						-											
REM	230895	10212	0	50/69/	100470	0	0	0	23480	11306	472441	0	98063	0	374378		155381		
TOT	869303	39501	õ	908804	218095	0	ő	ő	49517	14700	626492	0	98063	9000	145051 519429		22617		
		_		NET DE	C (2) (2) (2)														
			annee	HAT PRO	DANT VA	LUB (-	mg-l===		dancas.		(Panes				*******	PROFITAE	SILITY ==		Before
Disco	unt Rate		.01	5+0	¥ 8	.01	10.0%	12.0%	15	.01	20.0%		COM	PANY SH	ARE BASI	S			Tax
FR Af	ter Roy	& Oper.	626492	37653	5 290	501	248028	213916	174	159 1	28147		Rat	e of Re	turn (1)				88 6
Prod	& Other	Income.	0		0	0	0	0	6 C 25 C	0	0		Pro	fit Ind	ex (undi	8C.)	VALUE .		4 4
Capit	al Costs		98063	8195	9 74	039	69351	65076	59	343	51297				(disc	10.0	1		2.5
Aband	onment C	oata	9000	224	0 1	.069	678	442	1 1 2	245	102				(disc	5.0	1.1		3.5
Futur	e Net Re	venue .	519429	29233	6 215	393	177999	148397	114	572	76748		Pir	st Payo	ut (year		erer.		5.2
					COMPANY	SHARE							COB	t of Fi	nding (s	(BOE)	1211		9.35
			1st Y	lear Av	erage	Royalt	ies Co	er FR sts Roy	After	Capita Costs	1 Puture NetRey	e	NPV NPV	@ 10.0	\$ (\$/BOH \$ (\$/BOH	3			15.61
2000		********	*******	******	******					*******	*******					1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
* Int	erest Future R	evenue.	7	5.0	75.0	24.	o -	7.1	68.9	10.8	57.2								

TOTAL

ERGO V7.43 P2 EMERGY SOLUTIONS GLOBAL : 22-PEB-2017 5290. EFF:01-JAN-2017 DISC:01-JAN-2017 RUN DATE: 23-PEB-2017 TIME: 9:23 FILE:

Table 4d

Summary of Company Reserves and Economics

After Income Tax

Alber income Tax

January 1, 2017

Maha Energy Inc.

Total Proved Plus Probable Plus Possible

																				Discou	nted @	
Year	Net Operating income	Tax Cl	c Loss laim	c	Available Capital Deduction	1	Carry Forward	To	otal Applied Deductions	N	et Taxable Income	Inc	come Tax	Exp Ab	Capital cenditures & andonment	A.	fter Tax Cash Flow Indiscounted)		5%	10%	15%	20%
	MŞ		MS		MŞ		MS	_	MS	_	MS		MS		MS	-	MS	i.	MS	MS	MS	MS
2017	3310	\$	1,667	\$	926	\$	- ÷	\$	2,592	\$	718	\$	244	\$	4,313	-\$	1,247	0.50	-1,217	-1,189	-1,163	-1,138
2018	4202	\$	1,667	\$	1,786	\$	- 94	\$	3,453	\$	749	\$	255	\$	6,750	-\$	2,803	1.50	-2,605	-2,429	-2,273	-2,132
2019	8575	\$	1,667	\$	2,763	\$	1.5	\$	4,430	\$	4,145	\$	1,409	\$	13,500	-\$	6,334	2.50	-5,607	-4,991	-4,466	4,016
2020	18537	\$	11	\$	4,754	\$		\$	4,754	\$	13,783	\$	4,686	\$	25,500	-\$	11,649	3.50	-9,820	-8,345	-7,143	-6,154
2021	44070	\$		\$	8,331	\$	1.81	\$	8,331	\$	35,739	\$	12,151	\$	39,000	-\$	7,081	4.50	-5,685	-4,611	-3,775	-3,117
2022	57794	\$	1	\$	9,608	\$		\$	9,608	\$	48,185	\$	16,383	\$	4,500	\$	36,911	5.50	28,223	21,852	17,113	13,541
2023	52818	\$		\$	8,392	\$		\$	8,392	\$	44,426	\$	15,105	\$	4,500	\$	33,213	6.50	24,187	17,875	13,390	10,154
2024	48299	\$	1.8	\$	7,443	\$	1.1	\$	7,443	\$	40,856	\$	13,891			\$	34,408	7.50	23,864	16,835	12,062	8,766
2025	44127	\$	+	\$	6,601	\$	1.1	\$	6,601	\$	37,526	\$	12,759			\$	31,368	8.50	20,720	13,953	9,562	6,660
2026	40155	5	1.0	\$	5,851	\$		\$	5,851	\$	34,304	\$	11,663			\$	28,492	9.50	17,923	11,521	7,552	5,041
2027	36606	5	100	\$	5,192	\$	1.0	\$	5,192	\$	31,414	\$	10,681			\$	25,925	10.50	15,532	9,530	5,976	3,822
2028	33061	\$	1.0	\$	4,606	\$	1.5	\$	4,606	\$	28,455	\$	9,675			\$	23,387	11.50	13,344	7,815	4,688	2,873
2029	29822	\$	4	\$	4,087	\$		\$	4,087	\$	25,735	\$	8,750			\$	21,072	12.50	11,451	6,402	3,673	2,157
2030	26861	\$		\$	3,626	\$	· •	\$	3,626	\$	23,235	\$	7,900			\$	18,961	13.50	9,813	5,237	2,874	1,618
2031	24204	\$		\$	3,218	\$	-	\$	3,218	\$	20,986	\$	7,135			\$	17,069	14.50	8,413	4,286	2,249	1,214
2032	21797	\$	1.4	\$	2,855	\$		\$	2,855	\$	18,942	\$	6,440	\$	1,200	\$	14,157	15.50	6,646	3,231	1,622	839
2033	18472	\$	- 6	\$	2,367	\$		\$	2,367	\$	16,105	\$	5,476			\$	12,997	16.50	5,810	2,697	1,295	642
2034	16259	\$	-	\$	2,101	\$	1.0	\$	2,101	\$	14,158	\$	4,814			\$	11,445	17.50	4,873	2,159	992	471
2035	14254	s		\$	1,865	\$		\$	1,865	\$	12,390	\$	4,212			\$	10,042	18.50	4,072	1,722	757	344
2036	12500	\$	- A - L	\$	1,655	\$	1.2	\$	1,655	\$	10,845	\$	3,687			\$	8,813	19.50	3,404	1,374	577	252
2037	10934	\$		\$	1,469	\$		\$	1,469	\$	9,465	\$	3,218			\$	7,716	20.50	2,838	1,094	440	184
2038	9556	\$		\$	1,304	\$	-	\$	1,304	\$	8,252	\$	2,806			\$	6,750	21.50	2,365	870	334	134
2039	8324	\$		\$	1,157	\$		\$	1,157	\$	7,167	\$	2,437			\$	5,887	22.50	1,964	690	254	97
2040	7218	5	- 200	\$	1,027	\$		\$	1,027	\$	6,191	\$	2,105			\$	5,113	23.50	1,625	544	192	70
2041	6236	\$		\$	912	\$	141	\$	912	\$	5,324	\$	1,810			\$	4,426	24,50	1,339	428	144	51
2042	5359	\$		\$	809	\$		\$	809	\$	4,550	\$	1,547			\$	3,812	25.50	1,099	335	108	36
2043	4842	\$	*	\$	719	\$	1.1	\$	719	\$	4,123	\$	1,402			\$	3,440	26.50	944	275	85	27
2044	4516	\$	1.00	\$	560	\$	-	\$	560	s	3,956	\$	1,345	\$	3,900	-5	729	27.50	-191	-53	-16	-5
2045	2721	\$	1.4.1	\$	351	\$		\$	351	\$	2,370	\$	806			\$	1,915	28.50	477	127	36	11
2046	2346	5	1.	\$	313	\$	- A.	\$	313	\$	2,033	\$	691			\$	1,655	29.50	392	99	27	8
2047	2011	5	1.21	\$	278	\$		\$	278	\$	1,733	\$	589			\$	1,422	30,50	321	78	20	5
2048	1698	\$	20	\$	248	\$		\$	248	\$	1,450	\$	493			\$	1,205	31.50	259	60	15	4
2049	1427	5		\$	221	\$	- A-	\$	221	\$	1,207	\$	410			\$	1,017	32.50	208	46	11	3
2050	1197	\$	4	\$	197	\$	-	\$	197	\$	1,001	\$	340			\$	857	33,50	167	35	8	2
2051	988	5	1.2	\$	175	\$		\$	175	\$	813	\$	276			\$	712	34.50	132	27	6	1
2052	779	\$	1	\$	156	\$		\$	156	\$	623	\$	212			\$	567	35.50	100	19	4	1
2053	613.3	\$	1.0	5	139	s	-	\$	139	\$	474	\$	161	\$	3,900	-\$	3,448	36.50	-581	-106	-21	-4
Total	626,492		5000	C	98,062				103,062		523,429		177,966		107,063	2	341,463		182,132	108,120	66,781	42,321

Combined Tax Rate Rate 34%

78

Chapman Petroleum Engineering Ltd.

GLOSSARY OF TERMS (Abbreviations & Definitions)

General	
BIT	- Before Income Tax
AIT	- After Income Tax
M\$	- Thousands of Dollars
Effective Date	 The date for which the Present Value of the future cash flows and reserve categories are established
\$US	- United States Dollars
WTI	 West Texas Intermediate – the common reference for crude oil used for oil price comparisons
ARTC	 Alberta Royalty Tax Credit
GRP	- Gas Reference Price
Interests and Royalties	
BPO	- Before Payout
APO	- After Payout
APPO	- After Project Payout
Payout	 The point at which a participant's original capital investment is recovered from its net revenue
GORR	 Gross Overriding Royalty – percentage of revenue on gross revenue earned (can be an interest or a burden)
NC	 New Crown – crown royalty on petroleum and natural gas discovered after April 30, 1974
SS 1/150 (5%-15%) Oil	 Sliding Scale Royalty – a varying gross overriding royalty based on monthly production. Percentage is calculated as 1-150th of monthly production with a minimum percentage of 5% and a maximum of 15%
FH	- Freehold Royalty
P&NG	- Petroleum and Natural Gas
Тwp	- Township
Rge	- Range
Sec	- Section

Technical Data	
psia	- Pounds per square inch absolute
MSTB	 Thousands of Stock Tank Barrels of oil (oil volume at 60 F and 14.65 psia)
MMscf	 Millions of standard cubic feet of gas (gas volume at 60 F and 14.65 psia)
Bbls	- Barrels
Mbbls	- Thousands of barrels
MMBTU	 Millions of British Thermal Units – heating value of natural gas
STB/d	 Stock Tank Barrels of oil per day – oil production rate
Mscf/d	 Thousands of standard cubic feet of gas per day – gas production rate
GOR (scf/STB)	 Gas-Oil Ratio (standard cubic feet of solution gas per stock tank barrel of oil)
mKB	 Metres Kelly Bushing – depth of well in relation to the Kelly Bushing which is located on the floor of the drilling rig. The Kelly Bushing is the usual reference for all depth measurements during drilling operations.
EOR	- Enhanced Oil Recovery
GJ	- Gigajoules
Marketable or Sales Natural Gas	 Natural gas that meets specifications for its sale, whether it occurs naturally or results from the processing of raw natural gas. Field and plant fuel and losses to the point of the sale must be excluded from the marketable quantity. The heating value of marketable natural gas may vary considerably, depending on its composition; therefore, quantities are usually expressed not only in volumes but also in terms of energy content. Reserves are always reported as marketable quantities.
NGLs	 Natural Gas Liquids – Those hydrocarbon components that can be recovered from natural gas as liquids, including but not limited to ethane, propane, butanes, pentanes plus, condensate, and small quantities of non-hydrocarbons.
Raw Gas	 Natural gas as it is produced from the reservoir prior to processing. It is gaseous at the conditions under which its Volume is measured or estimated and may include varying amounts of heavier hydrocarbons (that may liquefy at atmospheric conditions) and water vapour; may also contain sulphur and other non-hydrocarbon compounds. Raw natural gas is generally not suitable for end use.
EUR	- Estimated Ultimate Recovery

22 February, 2017

Chapman Petroleum Engineering Ltd. 700, 1122 – 4th Street SW Calgary, AB T2R 1M1

Dear Sir:

Re: Company Representation Letter

Regarding the evaluation of our Company's oil and gas reserves and independent appraisal of the economic value of these reserves for the year ended December 31, 2016, (the effective date), we herein confirm to the best of our knowledge and belief as of the effective date of the reserves evaluation, and as applicable, as of today, the following representations and information made available to you during the conduct of the evaluation:

- We, Maha Energy Inc (the Client) have made available to you, Chapman Petroleum Engineering Ltd. (the Evaluator) certain records, information, and data relating to the evaluated properties that we confirm is, with the exception of immaterial items, complete and accurate as of the effective date of the reserves evaluation, including the following:
 - Accounting, financial, tax and contractual data
 - Asset ownership and related encumbrance information;
 - Details concerning product marketing, transportation and processing arrangements;
 - All technical information including geological, engineering and production and test data;
 - Estimates of future abandonment and reclamation costs.

Suite 1140, 10201 Southport Road SW Calgary, Alberta T2W 4X9 403-454-7560

- We confirm that all financial and accounting information provided to you is, to the best of our knowledge, both on an individual entity basis and in total, entirely consistent with that reported by our Company for public disclosure and audit purposes.
- We confirm that our Company has satisfactory title to all of the assets, whether tangible, Intangible, or otherwise, for which accurate and current ownership information has been provided.
- 4. With respect to all information provided to you regarding product marketing, transportation, and processing arrangements, we confirm that we have disclosed to you all anticipated changes, terminations, and additions to these arrangements that could reasonably be expected to have a material effect on the evaluation of our Company's reserves and future net revenues.
- 5. With the possible exception of items of an immaterial nature, we confirm the following as of the effective date of the evaluation:
 - For all operated properties that you have evaluated, no changes have occurred or are reasonably expected to occur to the operating conditions or methods that have been used by our Company over the past twelve (12) months, except as disclosed to you. In the case of non-operated properties, we have advised you of any such changes of which we have been made aware.
 - All regulatory, permits, and licenses required to allow continuity of future operations and production from the evaluated properties are in place and, except as disclosed to you, there are no directives, orders, penalties, or regulatory rulings in effect or expected to come into effect relating to the evaluated properties.
 - Except as disclosed to you, the producing trend and status of each evaluated well or entity in effect throughout the three-month period preceding the effective date of the evaluation are consistent with those that existed for the same well or entity immediately prior to this three-month period.
 - Except as disclosed to you, we have no plans or intentions related to the ownership, development or operation of the evaluated properties that could reasonably be expected to materially affect the production levels or recovery of reserves from the evaluated properties.

- If material changes of an adverse nature occur in the Company's operating performance subsequent to the effective date and prior to the report date, we will inform you of such material changes prior to requesting your approval for any public disclosure of reserves information.
- We hereby confirm that our Company is in material compliance with all Environmental Laws and does not have any Environmental Claims pending.

Between the effective date of the report and the date of this letter, nothing has come to our attention that has materially affected or could affect our reserves and economic value of these reserves that has not been disclosed to you.

Yours very truly,

President and Chief Executive Officer

Vice-President & Chief Corporate Officer